Almost Universally Optimal Distributed Laplacian Solvers via Low-Congestion Shortcuts

Themis Gouleakis

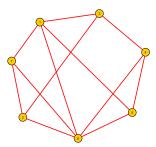
National University of Singapore

August 26th, 2022

Joint work with Ioannis Anagnostides, Bernhard Haeupler, Christoph Lenzen, and Goran Zuzic

Themis Gouleakis (National University of SirAlmost Universally Optimal Distributed Lapl

GRAPH LAPLACIANS AND LAPLACIAN SYSTEMS



- Let $G = (V, E, \vec{w} > 0)$
- The Laplacian of G is:

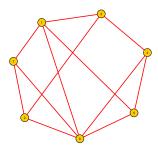
$$\mathbf{L}(G)_{u,v} = \begin{cases} \sum_{\{u,z\} \in E} w(u,z) & \text{If } u = v, \\ -w(u,v) & \text{otherwise.} \end{cases}$$

- Laplacian system solving: Find **x** such that **L**(G)**x**=**b**.
 - Note that: L(G) is: (i) symmetric, (ii) PSD and (iii) weakly diagonally dominant

PRIOR WORK AND APPLICATIONS

- First nearly-linear algorithm by [Spielman Teng 04]
- Applications in **graph algorithms**:
 - Max flow [Madry 13], [Madry 16]
 - Bipartite matching [Madry 13],[Madry 16], [Cohen Madry Sankowski Vladu 17]
 - min-cost flow [Cohen Madry Sankowski Vladu 17], [Axiotis Madry Vladu 20]
 - multicommodity flow [Koutis Miller Peng 10], [Kelner Lee Orecchia Sidford 14]
- More applications: Simulating electrical circuits, machine learning, image processing, network analysis, etc.

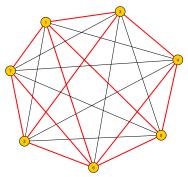
(SUPPORTED) CONGEST MODEL



- Synchronous message passing on the edges of the *communication* graph $\bar{G} = (V, E)$.
- $O(\log n)$ message size/internal computation each round.
- complexity=# rounds.
- Supported CONGEST variant: Each node knows \overline{G} in advance.

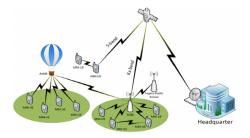
NODE CAPACITATED CLIQUE (NCC) MODEL

CONGESTED CLIQUE model [Lotker Pavlov Patt-Shamir Peleg 03]

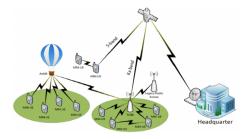


- *Complete* communication graph: $\bar{G} = K_{|V|}$.
- *Synchronous* messages of size $O(\log n)$ bits
- complexity=# rounds.
- NCC variant: Each node may *only* send or receive $O(\log n)$ messages in each round.

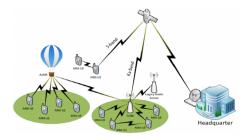
Themis Gouleakis (National University of SinAlmost Universally Optimal Distributed Lapl



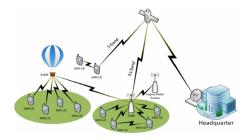
• The HYBRID model was recently introduced in [Augustine Hinnenthal Kuhn Scheideler Schneider 20]



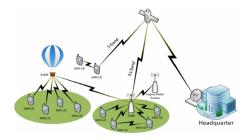
- The HYBRID model was recently introduced in [Augustine Hinnenthal Kuhn Scheideler Schneider 20]
- It enhances the standard LOCAL model with limited global power



- The HYBRID model was recently introduced in [Augustine Hinnenthal Kuhn Scheideler Schneider 20]
- It enhances the standard LOCAL model with limited global power
- The global network is realized using the node-capacitated clique (NCC)



- The HYBRID model was recently introduced in [Augustine Hinnenthal Kuhn Scheideler Schneider 20]
- It enhances the standard LOCAL model with limited global power
- The global network is realized using the node-capacitated clique (NCC)
 - Can communicate with at most $O(\log n)$ other entities per round



- The HYBRID model was recently introduced in [Augustine Hinnenthal Kuhn Scheideler Schneider 20]
- It enhances the standard LOCAL model with limited global power
- The global network is realized using the node-capacitated clique (NCC)
 - Can communicate with at most $O(\log n)$ other entities per round
- HYBRID leads to much faster algorithms that each model separately

Themis Gouleakis (National University of SirAlmost Universally Optimal Distributed Lapl

PRIOR WORK

CONGEST model:

 (almost) Existentially optimal Laplacian solver in n^{o(1)}(√n + D) log(1/ε) rounds. [Forster Goranci Liu Peng Sun 20]
 Worst- case Ω(√n + D) round lower bound

• Structure helps: e.g MST and Min-Cut on planar graphs in $\tilde{O}(D)$ rounds via *low-congestion shortcuts*. [Ghaffari Haeupler 16]

HYBRID models (LOCAL + NCC and CONGEST + NCC):

- Polynomial improvements for general graphs in APSP, SSSP [Kuhn and Schneider 20], [Censor-Hillel Leitersdorf Polosukhin 20][Censor-Hillel Leitersdorf Polosukhin 21] [Anagnostides G 21]
- Exponential improvements (i.e poly log *n* round algorithms) in MST, Min-cut, etc . [Feldmann Hinnenthal Scheideler 20], [Anagnostides G 21]

(CONGESTED) PART-WISE AGGREGATION

Congested Part-Wise Aggregation Problem

- Let G = (V(G), E(G))
- Suppose $P_1, \ldots, P_k \subseteq V(G)$ such that $G[P_i]$ is *connected* and each $v \in V(G)$ is contained in at most ρ parts P_i .
- Goal: Each node $v \in V(G)$ learns $\bigoplus_{w \in P_i} \vec{x}(w)$ (e.g min,sum, AND...)
- Setting $\rho = 1$ defines the standard (non-congested) version.
- How fast can this problem be solved?

LOW-CONGESTION SHORTCUTS

Low-congestion shortcuts [Ghaffari Haeupler 16]

- Let G = (V(G), E(G))
- Suppose $P_1 \uplus \cdots \uplus P_k \subseteq V(G)$ such that $G[P_i]$ is *connected*
- Let H_1, \ldots, H_k such that
 - The diameter of $G[P_i] + H_i$ is at most d (dilation)
 - Every $e \in E(G)$ appears in at most c (congestion) subgraphs.
- Q = c + d is called **shortcut quality**.
- Remark: Given a shortcut of quality Q, we can solve this problem in $\tilde{O}(Q)$ rounds.
- *SQ*(*G*) is the minimum shortcut quality of the worst case valid partition of the vertices of *G*

Let Q be the number of rounds required to solve part-wise aggregation.

- For general graphs $Q = \Omega(\sqrt{n} + D)$, but for more structured families Q is substantially smaller (e.g O(D) for planar graphs [Ghaffari Haeupler 16])
- For MST one can obtain $O(Q \log n)$ complexity
- For approximate Min-Cut $\tilde{O}(Q)$

LAPLACIAN SOLVER VIA PART-WISE AGGREGATION

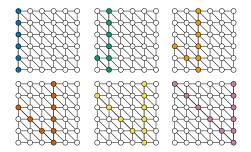
- Suppose that: solving ρ -congested part-wise aggregation problem takes $Q(\rho) = O(\rho^c Q)$ rounds for $c \ge 1$.
 - The constant \mathcal{Q} will depend on the communication model

Theorem

Consider a weighted \overline{n} -node graph \overline{G} for which the above holds for some $Q(\rho) = O(\rho^c Q)$, where c is a universal constant and $Q = Q(\overline{G})$ is some parameter. Then, we can solve any Laplacian system after $\overline{n}^{o(1)}Q\log(1/\epsilon)$ rounds.

Reduction to $\rho = 1$?

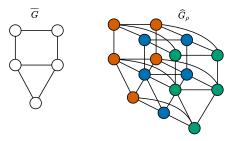
• Can we reduce solving the *ρ*-congested part-wise aggregation problem to solving 1-congested part-wise aggregation problems?



• We would need $\Omega(\sqrt{\bar{n}})$ problems even for $\rho = 2$.

LAYERED GRAPH

• We introduce the *layered graph* \hat{G}_{ρ}



Lemma

Let \overline{G} be an \overline{n} -node graph and let $\mathbb{Z}_{\geq 1} \ni \rho \leq \operatorname{poly}(\overline{n})$. If any (1-congested) part-wise aggregation on $\hat{G}_{O(\rho)}$ takes τ CONGEST rounds on $\hat{G}_{O(\rho)}$, then there exists an $\tilde{O}(\rho \cdot \tau)$ -round CONGEST algorithm on \overline{G} that solves any ρ -congested part-wise aggregation instance on \overline{G} .

PROOF SKETCH

Special case: Each P_i in the part-wise aggregation problem is a path.

- Let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$, where $P_i \subseteq V(\overline{G})$ is a simple path and E_i : edges in P_i .
- Goal: Find $\mathcal{P}' = \{P'_1, P'_2, \dots, P'_k\}$, where $P'_i \subseteq V(\hat{G}_{O(\rho)})$ such that: solving 1-congested PWA on $\mathcal{P}' \Rightarrow \rho$ -congested PWA on \mathcal{P} .
- Consider subgraph $G^* := (V(\overline{G}), \biguplus_{i=1}^k E_i)$ with $\Delta(G') = 2\rho$.
- Color the edges $\{u, v\} \in E(G')$ with colors $c(u, v) \in \{1, \dots, O(\Delta)\}$ in $O(\log n)$ *CONGEST* rounds [Johansson 99]
- Construct disjoint paths $P'_i \subseteq V(\hat{G}_{O(\rho)})$: For each $\{u, v\} \in E(G^*)$, add $u_{c(u,v)}, v_{c(u,v)}$ to P'_i .
- Simulate *τ*-round 1-congested PWA algorithm on *Ĝ*_{O(ρ)}
 (⇔ *ρ*− congested PWA on *Ḡ*) using *Õ*(*τ* · *ρ*) rounds on *Ḡ*.

OUR RESULTS FOR CONGEST

Theorem

For any \bar{n} -node graph \bar{G} and any $\mathbb{Z}_{\geq 1} \ni \rho \leq \text{poly}(\bar{n})$, we have that $SQ(\hat{G}_{\rho}) = \tilde{O}(SQ(\bar{G}))$.

Corollary

There exists a randomized distributed algorithm that, for any \bar{n} -node graph \bar{G} and $\rho \in \mathbb{Z}_{\geq 1} \leq \text{poly}(\bar{n}gou)$, solves with high probability any ρ -congested part-wise aggregation instance on \bar{G} with the following guarantees:

- In *CONGEST*, the algorithm terminates in at most $\rho \cdot \text{poly}(SQ(\bar{G})) \cdot \overline{n}^{o(1)}$ rounds.
- In Supported- $\acute{C}ONGEST$, the algorithm terminates in $\widetilde{O}(\rho \cdot SQ(\bar{G}))$ rounds.

Lemma [Augustine Ghaffari Gmyr Hinnenthal Scheideler Kuhn Li 19]

Let \overline{G} be an \overline{n} -node communication network. Then, we can solve with high probability any ρ -congested part-wise aggregation problem on \overline{G} after $O(\rho + \log \overline{n})$ rounds of NCC.

Theorem

Consider any *n*-node graph. There exists a distributed Laplacian solver in the HYBRID model with round complexity $n^{o(1)} \log(1/\epsilon)$, where $\epsilon > 0$ is the error of the solver.

LOWER BOUNDS-UNIVERSAL OPTIMALITY

Theorem

Consider a graph \overline{G} with shortcut quality $SQ(\overline{G})$. Then, solving a Laplacian system on \overline{G} with $\epsilon \leq \frac{1}{2}$ requires $\widetilde{\Omega}(SQ(\overline{G}))$ rounds even in the Supported-CONGEST model.

- Combined with our $O(n^{o(1)}SQ(\bar{G}))$ upper, this implies universal optimality up to an $n^{o(1)}$ factor.
 - That is, optimal for any given graph *G* (in the worst case input).
- Improvement over the known existentially optimal $n^{o(1)}(\sqrt{n} + D)$ algorithm by [Forster Goranci Liu Peng Sun 20].

SUMMARY- OPEN PROBLEMS

- We provide an (almost) universally optimal distributed algorithm for Laplacian systems in *CONGEST* and *HYBRID*.
- We use a *unified approach* via *ρ*-congested part-wise aggregation.
- Open problem: Efficient shortcut construction for general graphs in the CONGEST model?
- Can the techniques be applied to other graph problems?