Low-congestion Shortcuts without Embedding

Bernhard Haeupler ${ }^{1}$, Taisuke Izumi ${ }^{2}$, Goran Žužić ${ }^{1}$

${ }^{1}$ Carnegie Mellon University, USA
${ }^{2}$ Nagoya Institute of Technology, Japan

February 20, 2017

- Solve MST in CONGEST model

Minimum Spanning Tree (MST)

Given graph G with weights on edges, compute a spanning tree with minimum sum of weights of edges.

CONGEST model

Graph G with n nodes and diameter D. Computation in synchronized rounds. In each round all nodes send $O(\log n)$-bits to all their neighbors. In the end, every vertex outputs the MST weight.

- Lower bound $\tilde{\Omega}(D+\sqrt{n})$
- for MST, Min-Cut, Shortest Path, ... ©

Figure : Lower bound graph, [Ghaffari and Haeupler; SODA'16]

- $\tilde{\Omega}(\cdot), \tilde{O}(\cdot)$ supressed $\log ^{O(1)} n$ factors
- In practice
- Internet-like graphs
- n is huge (as is \sqrt{n})
- D is logarithmic
- lots of structure
- Can we do better than $\tilde{O}(D+\sqrt{n})$?
- People care: Spanning Tree Protocol [Perlman 1985]

Our Contribution

- Can we do better than $\tilde{O}(D+\sqrt{n})$: YES (for some graphs)

Our Contribution

- Can we do better than $\tilde{O}(D+\sqrt{n})$: YES (for some graphs)
- Central topic: Tree-Restricted Shortcuts

Our Contribution

- Can we do better than $\tilde{O}(D+\sqrt{n})$: YES (for some graphs)
- Central topic: Tree-Restricted Shortcuts

$$
\begin{array}{lclc}
& \text { simpler } & \tilde{O}(D) \text {-round } & \text { planar graphs } \\
& \text { new } & \tilde{O}(g D) \text {-round } & \text { genus- } g \text { graphs } \\
\text { [DISC'16] } & \text { new } & \tilde{O}(\sqrt{g} D) \text {-round } & \text { genus- } g \text { graphs } \\
\text { [DISC'16] } & \text { new } & \tilde{O}(k D) \text {-round } & \text { treewidth- } k \text { graphs }
\end{array}
$$

- [SODA'16] has $\tilde{O}(D)$ planar algorithm - but it requires a planar embedding (hard!)

Solving Strategy

Graph G has good TR-shortcuts

$$
\Downarrow
$$

Construct universally optimal TR-shortcuts in G

Construct fast distrib. algs for G

Overview

(1) What are tree-restricted shortcuts?
(2) How to use them? [in Boruvka]
(3) Graphs with good TR-shortcuts
(4) How to construct universally nearly optimal TR-shortcuts?

What are Tree-Restricted shortcuts?

- Fix any connected vertex partition
- Fix any (spanning) BFS tree T
- add edges of T to parts in order to reduce its parameter

What are Tree-Restricted shortcuts?
congestion
all edges used in $\leq c$ shortcuts

What are Tree-Restricted shortcuts?

congestion

all edges used in $\leq c$ shortcuts

block number

 all parts have $\leq b$ blocks

How to use TR-shortcuts?

- MST using Boruvka

Figure : Main step - find minimum outgoing edge in each part of partition

- MST using Boruvka

Figure: Spreading information within part in $O(b D)$

- for all parts together in $O(b(D+c))$

Graphs with good TR-shortcuts

Family	Congestion c	Block parameter b	$O(b(D+c))$
Planar graphs	$\tilde{O}(D)$	$\tilde{O}(1)$	$\tilde{O}(D)$
Genus-g graphs	$\tilde{O}(g D)$	$\tilde{O}(1)$	$\tilde{O}(g D)$
Treewidth- k graphs	$\tilde{O}(k)$	$\tilde{O}(k)$	$\tilde{O}(k D)$

How to Construct Universally Optimal TR-Shortcuts?

Theorem

Given a tree T spanning a graph G such that there exists a block-b congestion-c TR-shortcut
we can construct a block- $3 b$ congestion- $O(c \log n) T R$ shortcut.
Running time: $\tilde{O}(b(D+c))$-rounds (with high probability).

- tl;dr If a graph has good TR-shortcuts, we can find them efficiently.

How to Construct Universally Optimal TR-Shortcuts?

Algorithm

(1) Each part tries to take all the T-edges above it
(2) If edge is used by $>2 c$ times, delete it
(3) In the end, constant fraction of parts with have good shortcuts, so repeat $O(\log n)$ times

- A bit more details:
- First, D-level edges are taken, then D-1-level, ...
- Use part-wise random sampling for efficiency

Final Note

- Also works for Min-Cut [SODA'16]
- In "practice" (not knowing the exact topology)
- exponential search for $\max (b D, c)$
- try to construct TR-shortcut
- if successful, use it
- conjectured to be good in practice

