
Low-congestion Shortcuts without Embedding

Bernhard Haeupler 1, Taisuke Izumi 2, Goran �uºi¢ 1

1Carnegie Mellon University, USA

2Nagoya Institute of Technology, Japan

February 20, 2017

1 / 13



Problem

Solve MST in CONGEST model

Minimum Spanning Tree (MST)

Given graph G with weights on edges, compute a spanning tree
with minimum sum of weights of edges.

CONGEST model

Graph G with n nodes and diameter D. Computation in
synchronized rounds. In each round all nodes send O(log n)-bits to
all their neighbors. In the end, every vertex outputs the MST
weight.

2 / 13



Lower bound Ω̃(D +
√
n)

for MST, Min-Cut, Shortest Path, ... §

Figure : Lower bound graph, [Gha�ari and Haeupler; SODA'16]

Ω̃(·), Õ(·) supressed logO(1) n factors

3 / 13



In practice

Internet-like graphs
n is huge (as is

√
n)

D is logarithmic
lots of structure
Can we do better than Õ(D +

√
n)?

People care: Spanning Tree Protocol [Perlman 1985]

4 / 13



Our Contribution

Can we do better than Õ(D +
√
n): YES (for some graphs)

Central topic: Tree-Restricted Shortcuts

simpler Õ(D)-round planar graphs

new Õ(gD)-round genus-g graphs

[DISC'16] new Õ(
√
gD)-round genus-g graphs

[DISC'16] new Õ(kD)-round treewidth-k graphs

[SODA'16] has Õ(D) planar algorithm - but it requires a
planar embedding (hard!)

5 / 13



Our Contribution

Can we do better than Õ(D +
√
n): YES (for some graphs)

Central topic: Tree-Restricted Shortcuts

simpler Õ(D)-round planar graphs

new Õ(gD)-round genus-g graphs

[DISC'16] new Õ(
√
gD)-round genus-g graphs

[DISC'16] new Õ(kD)-round treewidth-k graphs

[SODA'16] has Õ(D) planar algorithm - but it requires a
planar embedding (hard!)

5 / 13



Our Contribution

Can we do better than Õ(D +
√
n): YES (for some graphs)

Central topic: Tree-Restricted Shortcuts

simpler Õ(D)-round planar graphs

new Õ(gD)-round genus-g graphs

[DISC'16] new Õ(
√
gD)-round genus-g graphs

[DISC'16] new Õ(kD)-round treewidth-k graphs

[SODA'16] has Õ(D) planar algorithm - but it requires a
planar embedding (hard!)

5 / 13



Solving Strategy

Graph G has good TR-shortcuts

ww�
Construct universally optimal TR-shortcuts in G

ww�
Construct fast distrib. algs for G

6 / 13



Overview

1 What are tree-restricted shortcuts?

2 How to use them? [in Boruvka]

3 Graphs with good TR-shortcuts

4 How to construct universally nearly optimal TR-shortcuts?

7 / 13



What are Tree-Restricted shortcuts?

Fix any connected vertex partition

Fix any (spanning) BFS tree T

add edges of T to parts in order to reduce its parameter

8 / 13



What are Tree-Restricted shortcuts?

congestion

all edges used in ≤ c shortcuts

9 / 13



What are Tree-Restricted shortcuts?

congestion

all edges used in ≤ c shortcuts

block number

all parts have ≤ b blocks

9 / 13



How to use TR-shortcuts?

MST using Boruvka

e1

e2

e3

cluster

cluster

Figure : Main step - �nd minimum outgoing edge in each part of partition

10 / 13



How to use TR-shortcuts?

MST using Boruvka

Pi

b1

T

b2

b3 b4

Figure : Spreading information within part in O(bD)

for all parts together in O(b(D + c))

10 / 13



Graphs with good TR-shortcuts

Family Congestion c Block parameter b O(b(D + c))

Planar graphs Õ(D) Õ(1) Õ(D)

Genus-g graphs Õ(gD) Õ(1) Õ(gD)

Treewidth-k graphs Õ(k) Õ(k) Õ(kD)

11 / 13



How to Construct Universally Optimal TR-Shortcuts?

Theorem

Given a tree T spanning a graph G such that there exists a

block-b congestion-c TR-shortcut

=⇒
we can construct a block-3b congestion-O(c log n) TR shortcut.

Running time: Õ(b(D + c))-rounds (with high probability).

tl;dr If a graph has good TR-shortcuts, we can �nd them
e�ciently.

12 / 13



How to Construct Universally Optimal TR-Shortcuts?

Algorithm

1 Each part tries to take all the T -edges above it

2 If edge is used by > 2c times, delete it

3 In the end, constant fraction of parts with have good
shortcuts, so repeat O(log n) times

A bit more details:

First, D-level edges are taken, then D − 1-level, ...
Use part-wise random sampling for e�ciency

12 / 13



Final Note

Also works for Min-Cut [SODA'16]

In �practice� (not knowing the exact topology)

exponential search for max(bD, c)
try to construct TR-shortcut
if successful, use it
conjectured to be good in practice

13 / 13


