Low-congestion Shortcuts without Embedding

Bernhard Haeupler ¹, Taisuke Izumi ², Goran Žužić ¹

¹Carnegie Mellon University, USA

²Nagoya Institute of Technology, Japan

February 20, 2017

1/13

• Solve MST in CONGEST model

Minimum Spanning Tree (MST)

Given graph G with weights on edges, compute a spanning tree with minimum sum of weights of edges.

$\mathsf{CONGEST} \ \mathsf{model}$

Graph G with n nodes and diameter D. Computation in synchronized rounds. In each round all nodes send $O(\log n)$ -bits to all their neighbors. In the end, every vertex outputs the MST weight.

- Lower bound $\tilde{\Omega}(D + \sqrt{n})$
- for MST, Min-Cut, Shortest Path, ... 😊

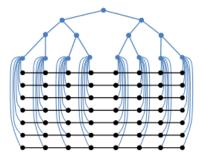


Figure : Lower bound graph, [Ghaffari and Haeupler; SODA'16]

• $\tilde{\Omega}(\cdot), \tilde{O}(\cdot)$ supressed $\log^{O(1)} n$ factors

- In practice
 - Internet-like graphs
 - *n* is huge (as is \sqrt{n})
 - D is logarithmic
 - lots of structure
 - Can we do better than $\tilde{O}(D + \sqrt{n})$?
- People care: Spanning Tree Protocol [Perlman 1985]

イロト イロト イヨト イヨト 二日

4 / 13

Our Contribution

• Can we do better than $\tilde{O}(D + \sqrt{n})$: YES (for some graphs)

Our Contribution

- Can we do better than $\tilde{O}(D + \sqrt{n})$: YES (for some graphs)
- Central topic: Tree-Restricted Shortcuts

Our Contribution

- Can we do better than $\tilde{O}(D + \sqrt{n})$: YES (for some graphs)
- Central topic: Tree-Restricted Shortcuts

	simpler	$ ilde{O}(D)$ -round	planar graphs	
	new	$ ilde{O}(gD)$ -round	genus-g graphs	
[DISC'16]	new	$ ilde{O}(\sqrt{g}D)$ -round	genus-g graphs	
[DISC'16]	new	$ ilde{O}(kD)$ -round	treewidth- <i>k</i> graphs	

• [SODA'16] has $\tilde{O}(D)$ planar algorithm - but it requires a planar embedding (hard!)

Graph G has good TR-shortcuts

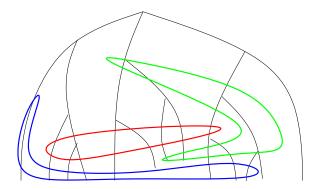
Construct universally optimal TR-shortcuts in G

Construct fast distrib. algs for G

- What are tree-restricted shortcuts?
- 2 How to use them? [in Boruvka]
- Graphs with good TR-shortcuts
- I How to construct universally nearly optimal TR-shortcuts?

What are Tree-Restricted shortcuts?

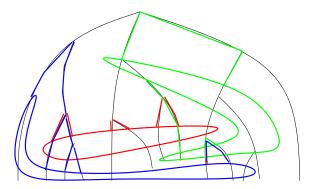
- Fix any connected vertex partition
- Fix any (spanning) BFS tree T
- add edges of T to parts in order to reduce its parameter



What are Tree-Restricted shortcuts?

congestion

all edges used in $\leq c$ shortcuts



<ロト < 部 > < 言 > < 言 > 三 の へ () 9 / 13

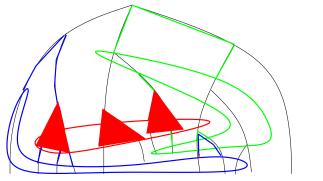
What are Tree-Restricted shortcuts?

congestion

all edges used in $\leq c$ shortcuts

block number

all parts have $\leq b$ blocks



• MST using Boruvka

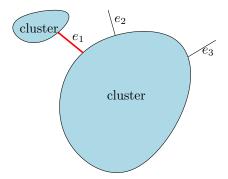


Figure : Main step - find minimum outgoing edge in each part of partition

How to use TR-shortcuts?

• MST using Boruvka

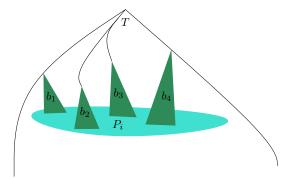


Figure : Spreading information within part in O(bD)

• for all parts together in O(b(D+c))

э

イロト イヨト イヨト イヨト

Family	Congestion c	Block parameter <i>b</i>	O(b(D+c))
Planar graphs	$\tilde{O}(D)$	$ ilde{O}(1)$	$\tilde{O}(D)$
Genus-g graphs	$\tilde{O}(gD)$	$ ilde{O}(1)$	$\tilde{O}(gD)$
Treewidth- <i>k</i> graph	is $ ilde{O}(k)$	$\tilde{O}(k)$	$\tilde{O}(kD)$

Theorem

 \implies

Given a tree T spanning a graph G such that there exists a **block**-b **congestion**-c TR-shortcut

we can construct a **block**-3b **congestion**-O(c log n) TR shortcut.

Running time: $\tilde{O}(b(D+c))$ -rounds (with high probability).

• tl;dr lf a graph has good TR-shortcuts, we can find them efficiently.

How to Construct Universally Optimal TR-Shortcuts?

Algorithm

- Each part tries to take all the T-edges above it
- 2 If edge is used by > 2c times, delete it
- In the end, constant fraction of parts with have good shortcuts, so repeat O(log n) times
 - A bit more details:
 - First, D-level edges are taken, then D-1-level, ...
 - Use part-wise random sampling for efficiency

- Also works for Min-Cut [SODA'16]
- In "practice" (not knowing the exact topology)
 - exponential search for max(bD, c)
 - try to construct TR-shortcut
 - if successful, use it
 - conjectured to be good in practice