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Motivating problem

Graph G
(undirected,
unweighted).

Input:
source-sink
demands.
Output:
Choose paths.
Objective:
min.
makespan.
Paths are
chosen
obliviously.
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Choosing paths obliviously

Intuition: each driver asks an offline mobile
navigation app to produce a path (given a
starting point si and destination ti ).

Formally:

Definition

Given G = (V ,E ), an oblivious routing R is a collection of |V |2
distributions R = {Ru,v}u,v∈V , where for each pair of nodes
u, v ∈ V we have a distribution Ru,v of paths between u and v .

How do drivers pick a path: Each driver going from s to t
samples a random path from Rs,t and drives along it.

Obliviousnes: All drivers sample from the same R . Note: path
chosen by driver i is independent (i.e. oblivious) of the path
chosen by driver j .
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Question—informal
Given G , does there exist a single oblivious routing R(G ) whose
makespan is Õ(1)-competitive with offline optimum for all
demands?

Impossible! No single oblivious routing suffices! [Räcke, Thesis,
’03]

M paths with
√

M hops

1 path with 1 hop
s t

1 demand → send along short path. Makespan = 1.
M demands → send along long paths. Makespan =

√
M.
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Overcoming the lower bound

Perfect obliviousness is a very strict constraint. We can get the
next best thing!

Our result—informal
For every graph G and OPT > 0, there exists a single oblivious
routing R(G ,OPT) whose makespan is Õ(OPT) for all demands
whose offline makespan is Θ̃(OPT ).

The above (near-) oblivious routing typically good enough.
Guess OPT.
Drivers sample a path from R(G ,OPT) and drive along it.
If successful, we are done! Otherwise, double OPT.
Guessing OPT loses an insignificant Õ(1) factor.
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Prior work 1/2

Oblivious makespan minimization (also called oblivious
congestion + dilation or C + D minimization):

Hypercubes has O(log n)-competitive makespan-minimizing
oblivious routings.

“Valiant’s trick”
Each drivers s → t picks a uniformly random intermediate m.
Greedy route s → m and greedy route m → t.

Similarly, expanders.
Grids, fat trees, etc.
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Prior work 2/2

[Aspnes et al., 2006] titled “Eight open problems in distributed
computing”:

Another important open problem is to find classes of net-
works in which oblivious routing gives C+D [congestion +
dilation] close to the off-line optimal... Such a result have
immediate consequences in packet scheduling algorithms.

It seems like our result for all graphs G was missed.
In spite of being a prominent open problem and special graphs
having received considerable attention.
Probably due to the impossibility result.
Simply showing the existence is quite technically involved.
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Barrier: tree-based routings do not suffice

Definition (Tree-based routing R)

There is a collection of trees T1, . . . ,Tk . Each demand s, t picks a
random tree and routes along it.

s

t

s s

t t

All previously considered constructions of oblivious routings were
tree-based.

Barrier

There exists a graph G such that there exists no Õ(1)-competitive
tree-based routing.
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Solution: Partial tree embeddings

Partial trees: different trees embed different sets of nodes.

Idea: Partial tree distributions can support “routing with errors” [in
the paper: D(1)-routers].

Theorem
For any graph G and OPT, there is a distribution over partial tree
embeddings such that 50% of all demands that can be routed in
Õ(OPT) time are routed in Õ(OPT) time.

Note: if the source s or t are not in tree, this is an “error”.
Error correction: one can fully eliminate errors with a complicated
scheme described in the paper.
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Connections with other areas 1/2

Application: Universally-optimal distributed algorithms
(original motivation)

Problem: distributed minimum spanning tree, SSSP, min-cut...

Goal: an algorithm that is as fast as possible for a given
network G (up to polylogs).

We get [HWZ, STOC’21]: if the network G is known in
advance (but not the input!), there is a single algorithm that is
fast as possible on all networks.

Open question: efficient construction of hop-constrained
oblivious routings =⇒ a single distributed algorithm that is
optimal on all networks.

Connection: Many problems are (up to polylogs) equivalent to
simple pairwise communication problems.

14 / 15



Connections with other areas 2/2

Bigger picture: Bi-criteria optimization of congestion and dilation.
Generally very interesting but very hard questions.
Cross-disciplinary. More research, better understanding, and new
tools are needed.

First few results of this kind:

Tree embeddings for hop-constrained network design [HHZ,
STOC’21]

General-purpose tree embeddings for problems with
hop-constraints.
Bi-criteria guarantees for: Steiner tree, Steiner forest, group
Steiner tree, ...

Network Coding Gaps for Makespan minimization: [HWZ,
FOCS’20]

How much does network coding help vs. routing in
communication?

Your next application?

Thank you!
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