(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

Domagoj Bradac¹, Sahil Singla², Goran Zuzic³

 $\begin{array}{l} \mbox{University of Zagreb} \rightarrow \mbox{ETH Zurich}^1 \\ \mbox{Princeton and Institute for Advanced Study}^2 \\ \mbox{Carnegie Mellon University}^3 \end{array}$

September 21, 2019

Domagoj Bradac Sahil Singla

²Slides are based on a deck by Sahil Singla.

Outline

Problem definition

- 3 Adaptivity gap
- 4 Results
- **5** Proof: Upper bound
- 6 Conclusion

Motivating example: Birthday party

• Only 1 hour before deadline!

Motivating example: Birthday party

- Only 1 hour before deadline!
- Remark: if probabilities 1 & nodes distinct, then
 Orienteering Problem
 [Blum et al. FOCS'03].

비로 《로》《로》《토》《唱》《

3/21

• Probabilities of being active: independent.

- Probabilities of being active: independent.
- Objective: # distinct items.

- Probabilities of being active: independent.
- Objective: # distinct items.
- Constraint: 1 hour in the given metric.

- Probabilities of being active: independent.
- Objective: # <u>distinct</u> items.
- Constraint: 1 hour in the given metric.
- Goal: maximize the <u>expected</u> objective value.

 $0.5\!+\!0.5\!+\!0.4=1.4$

Can we do better?

2 Problem definition

- 3 Adaptivity gap
- 4 Results
- **5** Proof: Upper bound
- 6 Conclusion

Given:

• Universe $[n] = \{1, 2, ..., n\}.$

Given:

- Universe $[n] = \{1, 2, ..., n\}.$
- Probabilities p_1, p_2, \ldots, p_n of being active.

Given:

- Universe $[n] = \{1, 2, ..., n\}.$
- Probabilities p_1, p_2, \ldots, p_n of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
 - $\bullet \ \mathcal{C}$ is downward closed.

Given:

- Universe $[n] = \{1, 2, ..., n\}.$
- Probabilities p_1, p_2, \ldots, p_n of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
 - $\bullet \ \mathcal{C}$ is downward closed.
- Monotone valuation function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$.

Given:

- Universe $[n] = \{1, 2, ..., n\}.$
- Probabilities p_1, p_2, \ldots, p_n of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
 - $\bullet \ \mathcal{C}$ is downward closed.
- Monotone valuation function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$.

Then:

- Find $Probed \subseteq [n]$ satisfying constraints.
 - i.e., $\textbf{Probed} \in \mathcal{C}$

Given:

- Universe $[n] = \{1, 2, ..., n\}.$
- Probabilities p_1, p_2, \ldots, p_n of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
 - $\bullet \ \mathcal{C}$ is downward closed.
- Monotone valuation function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$.

Then:

- Find Probed $\subseteq [n]$ satisfying constraints.
 - $\bullet \hspace{0.2cm} i.e., \hspace{0.2cm} \underline{Probed} \in \mathcal{C}$
- Sample a set of <u>active</u> elements $A \subseteq [n]$.
 - i.e., $(i \in A) \sim \operatorname{Bernoulli}(p_i)$ independent of $j \neq i$

Given:

- Universe $[n] = \{1, 2, ..., n\}.$
- Probabilities p_1, p_2, \ldots, p_n of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
 - $\bullet \ \mathcal{C}$ is downward closed.
- Monotone valuation function $f: 2^{[n]} \to \mathbb{R}_{\geq 0}$.

Then:

- Find Probed $\subseteq [n]$ satisfying constraints.
 - $\bullet \hspace{0.2cm} i.e., \hspace{0.2cm} \underline{Probed} \in \mathcal{C}$
- Sample a set of <u>active</u> elements $A \subseteq [n]$.
 - i.e., $(i \in A) \sim \operatorname{Bernoulli}(p_i)$ independent of $j \neq i$
- Goal: Maximize $f(\text{Probed} \cap A)$.
 - i.e., $\mathbb{E}_A[f(\operatorname{Probed} \cap A)]$

Adaptive: a decision tree where every root-leaf path is feasible.

1 Motivating example

2 Problem definition

- 3 Adaptivity gap
- 4 Results
- **5** Proof: Upper bound
- 6 Conclusion

Definition (Adaptivity gap)

Ratio of the best adaptive to best non-adaptive strategy.

$$AdaptivityGap := \frac{\mathbb{E}[Adap]}{\mathbb{E}[NA]}$$

Adaptive example: probe 1 \rightarrow probe 2 OR 3.

$$\mathbb{E}[Adap] = 0.5(1 + 0.1) + 0.5(0 + 0.5)$$

$$= 0.8$$

$$\mathbb{E}[NA] = 1 - 0.5 \cdot 0.5$$

$$= 0.75$$
Main question: How large can the gap be?
$$p_{2} = 0.5$$

$$p_{3} = 0.1$$

10/21

Adaptive strategy concerns:

- Can be <u>exponentially</u> sized.
- How to compute?
- How to represent?

Adaptive strategy concerns:

- Can be <u>exponentially</u> sized.
- How to compute?
- How to represent?

Best non-adaptive: select a feasible $\operatorname{Probed} \in \mathcal{C}$ in the $\underline{\mathsf{beginning}}$ to

$$\max \mathbb{E}_{A \sim p}[f(\operatorname{Probed} \cap A)].$$

Benefits:

Adaptive strategy concerns:

- Can be <u>exponentially</u> sized.
- How to compute?
- How to represent?

Best non-adaptive: select a feasible $\operatorname{Probed} \in \mathcal{C}$ in the $\underline{\mathsf{beginning}}$ to

$$\max \mathbb{E}_{A \sim p}[f(\operatorname{Probed} \cap A)].$$

Benefits:

• Easier to represent: just output the set.

• Easier to find: $g(S) = \mathbb{E}_{A \sim p}[f(S \cap A)]$ is often submodular.

Concern:

Adaptive strategy concerns:

- Can be <u>exponentially</u> sized.
- How to compute?
- How to represent?

Best non-adaptive: select a feasible $\operatorname{Probed} \in \mathcal{C}$ in the $\underline{\mathsf{beginning}}$ to

$$\max \mathbb{E}_{A \sim p}[f(\operatorname{Probed} \cap A)].$$

Benefits:

• Easier to represent: just output the set.

• Easier to find: $g(S) = \mathbb{E}_{A \sim p}[f(S \cap A)]$ is often submodular.

Concern: large adaptivity $gap := \frac{\mathbb{E}[Adap]}{\mathbb{E}[NA]}$.

• Assume α is small.

Question: For what constraints and functions is the gap small?

1 Motivating example

2 Problem definition

3 Adaptivity gap

5 Proof: Upper bound

Our results

Theorem

Adaptivity gap is 2.

- Always $gap \leq 2$, there exists an example where gap = 2.
- Function = monotone submodular.
- Constraints = downward closed.
- Downward closed: If a set can be probed then also its subsets can.
- Submodular: E.g., # of distinct elements.

Our results

Theorem

Adaptivity gap is 2.

- Always $gap \leq 2$, there exists an example where gap = 2.
- Function = monotone submodular.
- Constraints = downward closed.
- Downward closed: If a set can be probed then also its subsets can.
- Submodular: E.g., # of distinct elements.

Theorem

Adaptivity gap is between $\Omega(\sqrt{k})$ and $O(k \log k)$.

- Function = weighted rank of k-matroid intersection.
- Constraints = downward closed.

Prior work

Reference	Function	Constraints	Gap LB	Gap UB
[GN'13]	k_1 -matroid intersection	k ₂ -matroid intersection		$O\left((k_1+k_2)^2\right)$
[GNS'16]	<i>k</i> -matroid in- tersection	downward closed		$O(k^4 \log kn)$
[an'16]	monotone submodular	1-matroid	$rac{e}{e-1}pprox 1.58$	$rac{e}{e-1}pprox 1.58$
[GNS'17]	monotone submodular	downward closed	1.58 [AN'16]	3

Prior work

Reference	Function	Constraints	Gap LB	Gap UB
[GN'13]	k_1 -matroid intersection	<i>k</i> ₂ -matroid intersection		$O\left((k_1+k_2)^2\right)$
[GNS'16]	<i>k</i> -matroid in- tersection	downward closed		$O(k^4 \log kn)$
[an'16]	monotone submodular	1-matroid	$rac{e}{e-1}pprox 1.58$	$rac{e}{e-1}pprox 1.58$
[GNS'17]	monotone submodular	downward closed	1.58 [AN'16]	3
this paper	monotone submodular	downward closed	2	2
this paper	<i>k</i> -matroid in- tersection	downward closed	\sqrt{k}	$O(k \log k)$

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

6 Conclusion

Theorem

Adaptivity gap is at most 2.

- Function = monotone submodular.
- Constraints = downward closed.

Steps:

Theorem

Adaptivity gap is <u>at most</u> 2.

- Function = monotone submodular.
- Constraints = downward closed.

Steps:

- Transform an adaptive strategy to a non-adaptive.
- **2** Prove $\mathbb{E}[NA] \geq \frac{1}{2}\mathbb{E}[Adap]$.

Upper bound: Two ideas

(1) Take a random root-leaf path

• Only show existence

Upper bound: Two ideas

- (1) Take a random root-leaf path
 - Only show existence

Blue path prob = $0.7 \cdot 0.5 \cdot 0.7$

- Here Adap gets 2.
- Here NA gets 0.3 + 0.5 + 0.7 = 1.5
- Goal to show: $\mathbb{E}[NA] = \mathbb{E}[RandomPath] \ge \frac{1}{2}\mathbb{E}[Adap].$

Upper bound: Two ideas

(1) Take a random root-leaf path

• Only show existence

(2) Node-by-node induction

• Convert *NA* to a "greedy" algorithm for induction.

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

<u>Def</u>: I =is the root active in *Adap*? Def: R =is the root active in *NA*?

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

<u>Def</u>: I =is the root active in Adap? <u>Def</u>: R =is the root active in NA?

$$Adap = \mathbb{E}_{I}[f(I) + Adap(T_{I}, f_{I})]$$

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

Def:
$$I =$$
 is the root active in Adap?
Def: $R =$ is the root active in NA?

$$\begin{array}{lll} \textit{Adap} &= & \mathbb{E}_{I}[f(I) + \textit{Adap}(T_{I}, f_{I})] \\ &\leq & \mathbb{E}_{I,R}[f(I \cup R) + \textit{Adap}(T_{I}, f_{I \cup R})] \end{array}$$

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

Def:
$$I =$$
 is the root active in Adap?
Def: $R =$ is the root active in NA?

$$\begin{array}{lll} \textit{Adap} &= & \mathbb{E}_{I}[f(I) + \textit{Adap}(T_{I}, f_{I})] \\ &\leq & \mathbb{E}_{I,R}[f(I \cup R) + \textit{Adap}(T_{I}, f_{I \cup R})] \\ &\leq & \mathbb{E}_{I,R}[2f(R) + \textit{Adap}(T_{I}, f_{I \cup R})]. \end{array}$$

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

Def:
$$I =$$
is the root active in Adap?
Def: $R =$ is the root active in NA?

$$\begin{array}{lll} \textit{Adap} &= & \mathbb{E}_{I}[f(I) + \textit{Adap}(T_{I}, f_{I})] \\ &\leq & \mathbb{E}_{I,R}[f(I \cup R) + \textit{Adap}(T_{I}, f_{I \cup R})] \\ &\leq & \mathbb{E}_{I,R}[2f(R) + \textit{Adap}(T_{I}, f_{I \cup R})]. \end{array}$$

Non-adaptive:

$$NA = \mathbb{E}_{I,R}[f(R) + NA(T_I, f_R)]$$

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

Def:
$$I =$$
 is the root active in Adap?
Def: $R =$ is the root active in NA?

$$\begin{array}{lll} \textit{Adap} &= & \mathbb{E}_{I}[f(I) + \textit{Adap}(T_{I}, f_{I})] \\ &\leq & \mathbb{E}_{I,R}[f(I \cup R) + \textit{Adap}(T_{I}, f_{I \cup R})] \\ &\leq & \mathbb{E}_{I,R}[2f(R) + \textit{Adap}(T_{I}, f_{I \cup R})]. \end{array}$$

Non-adaptive:

$$NA = \mathbb{E}_{I,R}[f(R) + NA(T_I, f_R)]$$

$$\geq \mathbb{E}_{I,R}[f(R) + NA(T_I, f_{I\cup R})]$$

Goal: $\mathbb{E}[RandomPath] \geq \frac{1}{2}\mathbb{E}[Adap].$

Def:
$$I =$$
is the root active in Adap?
Def: $R =$ is the root active in NA?

$$\begin{array}{lll} \textit{Adap} &= & \mathbb{E}_{I}[f(I) + \textit{Adap}(T_{I}, f_{I})] \\ &\leq & \mathbb{E}_{I,R}[f(I \cup R) + \textit{Adap}(T_{I}, f_{I \cup R})] \\ &\leq & \mathbb{E}_{I,R}[2f(R) + \textit{Adap}(T_{I}, f_{I \cup R})]. \end{array}$$

Non-adaptive:

$$NA = \mathbb{E}_{I,R}[f(R) + NA(T_I, f_R)]$$

$$\geq \mathbb{E}_{I,R}[f(R) + NA(T_I, f_{I\cup R})]$$

Induction hypothesis:

$$\mathbb{E}_{I,R}[Adap(T_i, f_{I\cup R})] \leq 2 \cdot \mathbb{E}_{I,R}[NA(T_I, f_{I\cup R})]$$

1 Motivating example

2 Problem definition

3 Adaptivity gap

4 Results

5 Proof: Upper bound

Generalizations of stochastic probing:

- Multi-value setting.
- *k*-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Generalizations of stochastic probing:

- Multi-value setting.
- *k*-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Open problem:

• O(polylog(n)) for subadditive functions?

Generalizations of stochastic probing:

- Multi-value setting.
- *k*-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Open problem:

• O(polylog(n)) for subadditive functions?

Main takeaways:

- <u>Stochastic probing</u> captures many natural problems.
- Often have small adaptivity gap.
- Focus on, much simpler, non-adaptive strategies.

Generalizations of stochastic probing:

- Multi-value setting.
- *k*-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Open problem:

• O(polylog(n)) for subadditive functions?

Main takeaways:

- Stochastic probing captures many natural problems.
- Often have small adaptivity gap.
- Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?

Reference	Function	Constraints	Gap LB	Gap UB
[GN'13]	k_1 -matroid intersection	k_2 -matroid intersection	$k_1 + k_2$	$O\left((k_1+k_2)^2\right)$
[GNS'16]	<i>k</i> -matroid in- tersection	downward closed		$O(k^4 \log kn)$
[AN'16]	monotone submodular	1-matroid	$rac{e}{e-1} pprox 1.58$	$rac{e}{e-1}pprox 1.58$
[GNS'17]	monotone submodular	downward closed	3	1.58 via [AN'16]
this paper	monotone submodular	downward closed	2	2
this paper	<i>k</i> -matroid in- tersection	downward closed	k	$O(k \log k)$