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Motivating example: Birthday party

p = 0.5p = 0.5

p = 0.8

p = 0.4 p = 0.25
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Only 1 hour before deadline!

Remark: if probabilities 1 &
nodes distinct, then
Orienteering Problem
[Blum et al. FOCS’03].
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Things to note

Probabilities of being active:
independent.

Objective: # distinct items.

Constraint: 1 hour in the given
metric.

Goal: maximize the expected
objective value.
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Problem definition: Stochastic probing

Given:
Universe [n] = {1, 2, . . . , n}.

Probabilities p1, p2, . . . , pn of being active.
Probing constraints C ⊆ 2[n].

C is downward closed.

Monotone valuation function f : 2[n] → R≥0.

Then:
Find Probed ⊆ [n] satisfying constraints.

i.e., Probed ∈ C
Sample a set of active elements A ⊆ [n].

i.e., (i ∈ A) ∼ Bernoulli(pi ) independent of j 6= i
Goal: Maximize f (Probed ∩ A).

i.e., EA[f (Probed ∩ A)]
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Adaptive vs. non-adaptive strategies

Adaptive: a decision tree where every root-leaf path is feasible.

no yes

no yes no yes

no yes

Non-adaptive: ( , , , )
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Adaptivity gap

Definition (Adaptivity gap)

Ratio of the best adaptive to best non-adaptive strategy.

AdaptivityGap :=
E[Adap]

E[NA]

Adaptive example: probe 1 → probe 2 OR 3.

E[Adap] = 0.5(1 + 0.1) + 0.5(0 + 0.5)

= 0.8
E[NA] = 1− 0.5 · 0.5

= 0.75

Main question: How large can the gap be?

p1 = 0.5

p2 = 0.5 p3 = 0.1

No Yes

10 / 21



Why care about adaptivity gaps?

Adaptive strategy concerns:

Can be exponentially sized.
How to compute?
How to represent?

no yes

no yes no yes

no yes

Best non-adaptive: select a feasible Probed ∈ C in the beginning
to

maxEA∼p[f (Probed ∩ A)].

Benefits:
Easier to represent: just output the set.
Easier to find: g(S) = EA∼p[f (S ∩ A)] is often submodular.

Concern: large adaptivity gap := E[Adap]
E[NA] .
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Small adaptivity gap

Assume α is small.

Best adaptive

Best non-adaptive Algorithm

Adaptivity gap

Approx ratio α

Bound: α · gap

Question: For what constraints and functions is the gap small?
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Our results

Theorem
Adaptivity gap is 2.

Always gap ≤ 2, there exists an example where gap = 2.
Function = monotone submodular.
Constraints = downward closed.

Downward closed: If a set can be probed then also its subsets can.

Submodular: E.g., # of distinct elements.

Theorem

Adaptivity gap is between Ω(
√

k) and O(k log k).
Function = weighted rank of k-matroid intersection.
Constraints = downward closed.
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Prior work

Reference Function Constraints Gap LB Gap UB

[GN’13] k1-matroid
intersection

k2-matroid
intersection

O
(
(k1 + k2)2

)
[GNS’16] k-matroid in-

tersection
downward
closed

O(k4 log kn)
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1-matroid e
e−1 ≈ 1.58 e

e−1 ≈ 1.58
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downward
closed

1.58 [AN’16] 3

this paper monotone
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2 2
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Upper bound: Proof Steps

Theorem
Adaptivity gap is at most 2.

Function = monotone submodular.
Constraints = downward closed.

Steps:

1 Transform an adaptive strategy to a non-adaptive.
2 Prove E[NA] ≥ 1

2E[Adap].
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Upper bound: Two ideas

(1) Take a random root-leaf path
Only show existence

X
X X

X X

NO .. p = 0.7 p = 0.3 .. YES

0.5 0.5 0.2 0.8

0.3 0.7
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Only show existence

X
X X

X X

NO .. p = 0.7 p = 0.3 .. YES

0.5 0.5 0.2 0.8

0.3 0.7

Blue path prob = 0.7 · 0.5 · 0.7
Here Adap gets 2.
Here NA gets 0.3 + 0.5 + 0.7 = 1.5
Goal to show: E[NA] = E[RandomPath] ≥ 1

2E[Adap].
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Upper bound: Two ideas

(1) Take a random root-leaf path
Only show existence

X
X X

X X

NO .. p = 0.7 p = 0.3 .. YES

0.5 0.5 0.2 0.8

0.3 0.7

(2) Node-by-node induction
Convert NA to a “greedy” algorithm for induction.
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Upper bound: Proof

Goal: E[RandomPath] ≥ 1
2E[Adap].

Def: I = is the root active in Adap?
Def: R = is the root active in NA?

Adap = EI [f (I ) + Adap(TI , fI )]

≤ EI ,R [f (I ∪ R) + Adap(TI , fI∪R)]

≤ EI ,R [2f (R) + Adap(TI , fI∪R)].

Non-adaptive:

NA = EI ,R [f (R) + NA(TI , fR)]

≥ EI ,R [f (R) + NA(TI , fI∪R)]

Induction hypothesis:

EI ,R [Adap(Ti , fI∪R)] ≤ 2 · EI ,R [NA(TI , fI∪R)]
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Conclusion

Generalizations of stochastic probing:
Multi-value setting.
k-extendible systems.
XOS functions [GNS’17] (submodular ⊆ XOS ⊆ subadditive).

Open problem:
O(polylog(n)) for subadditive functions?

Main takeaways:
Stochastic probing captures many natural problems.
Often have small adaptivity gap.
Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?
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