(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

Domagoj Bradac ${ }^{1}$, Sahil Singla ${ }^{2}$, Goran Zuzic ${ }^{3}$

University of Zagreb \rightarrow ETH Zurich ${ }^{1}$
Princeton and Institute for Advanced Study ${ }^{2}$
Carnegie Mellon University ${ }^{3}$

September 21, 2019

Domagoj Bradac Sahil Singla

[^0]
Outline

(1) Motivating example
(2) Problem definition
(3) Adaptivity gap
(4) Results
(5) Proof: Upper bound
(6) Conclusion

Motivating example: Birthday party

Motivating example: Birthday party

- Only 1 hour before deadline!
- Remark: if probabilities 1 \& nodes distinct, then Orienteering Problem [Blum et al. FOCS'03].

Things to note

- Probabilities of being active: independent.

$$
p=0.4
$$

Things to note

- Probabilities of being active: independent.
- Objective: \# distinct items.

$$
p=0.4
$$

$$
p=0.25
$$

Things to note

$$
p=0.4
$$

Things to note

$$
p=0.4
$$

15 min

$$
p=0.5
$$

$$
25 \min
$$

$$
20 \mathrm{~min}
$$

$$
p=0.4
$$

$$
0.5+0.5+0.4=1.4
$$

$$
p=0.4
$$

Can we do better?

$p=0.5$
25 min

$20 \min$

$$
p=0.5
$$

25 min	$p=0.8$
$p=0.5$	
20 min	

$$
p=0.8
$$

$$
\begin{array}{cc}
0.5(1+0.5+0)+ \\
0.5+0.5+0.4=1.4 & 0.5(0+0.5+0.8)=1.4
\end{array}
$$

Can we do better?

Outline

(1) Motivating example
(2) Problem definition
(3) Adaptivity gap
(4) Results
(5) Proof: Upper bound
(6) Conclusion

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.
- Probabilities $p_{1}, p_{2}, \ldots, p_{n}$ of being active.

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.
- Probabilities $p_{1}, p_{2}, \ldots, p_{n}$ of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
- \mathcal{C} is downward closed.

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.
- Probabilities $p_{1}, p_{2}, \ldots, p_{n}$ of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
- \mathcal{C} is downward closed.
- Monotone valuation function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$.

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.
- Probabilities $p_{1}, p_{2}, \ldots, p_{n}$ of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
- \mathcal{C} is downward closed.
- Monotone valuation function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$.

Then:

- Find Probed $\subseteq[n]$ satisfying constraints.
- i.e., Probed $\in \mathcal{C}$

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.
- Probabilities $p_{1}, p_{2}, \ldots, p_{n}$ of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
- \mathcal{C} is downward closed.
- Monotone valuation function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$.

Then:

- Find Probed $\subseteq[n]$ satisfying constraints.
- i.e., Probed $\in \mathcal{C}$
- Sample a set of active elements $A \subseteq[n]$.
- i.e., $(i \in A) \sim \operatorname{Bernoulli}\left(p_{i}\right)$ independent of $j \neq i$

Problem definition: Stochastic probing

Given:

- Universe $[n]=\{1,2, \ldots, n\}$.
- Probabilities $p_{1}, p_{2}, \ldots, p_{n}$ of being active.
- Probing constraints $\mathcal{C} \subseteq 2^{[n]}$.
- \mathcal{C} is downward closed.
- Monotone valuation function $f: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$.

Then:

- Find Probed $\subseteq[n]$ satisfying constraints.
- i.e., Probed $\in \mathcal{C}$
- Sample a set of active elements $A \subseteq[n]$.
- i.e., $(i \in A) \sim \operatorname{Bernoulli}\left(p_{i}\right)$ independent of $j \neq i$
- Goal: Maximize $f($ Probed $\cap A)$.
- i.e., $\mathbb{E}_{A}[f(\operatorname{Probed} \cap A)]$

Adaptive vs. non-adaptive strategies

Adaptive: a decision tree where every root-leaf path is feasible.

Non-adaptive:

Outline

(1) Motivating example
(2) Problem definition
(3) Adaptivity gap

4 Results
(5) Proof: Upper bound
(6) Conclusion

Adaptivity gap

Definition (Adaptivity gap)

Ratio of the best adaptive to best non-adaptive strategy.

$$
\text { AdaptivityGap }:=\frac{\mathbb{E}[\text { Adap }]}{\mathbb{E}[\mathrm{NA}]}
$$

Adaptive example: probe $1 \rightarrow$ probe 2 OR 3.

$$
\begin{aligned}
\mathbb{E}[\text { Adap }] & =0.5(1+0.1)+0.5(0+0.5) \\
& =0.8 \\
\mathbb{E}[\mathrm{NA}] & =1-0.5 \cdot 0.5 \\
& =0.75
\end{aligned}
$$

Main question: How large can the gap be?

$$
p_{2}=0.5
$$

$$
p_{3}=0.1
$$

Why care about adaptivity gaps?

Adaptive strategy concerns:

- Can be exponentially sized.
- How to compute?
- How to represent?

Why care about adaptivity gaps?

Adaptive strategy concerns:

- Can be exponentially sized.
- How to compute?
- How to represent?

Best non-adaptive: select a feasible Probed $\in \mathcal{C}$ in the beginning to

$$
\max \mathbb{E}_{A \sim p}[f(\text { Probed } \cap A)]
$$

Benefits:

Why care about adaptivity gaps?

Adaptive strategy concerns:

- Can be exponentially sized.
- How to compute?
- How to represent?

Best non-adaptive: select a feasible Probed $\in \mathcal{C}$ in the beginning to

$$
\max \mathbb{E}_{A \sim p}[f(\text { Probed } \cap A)]
$$

Benefits:

- Easier to represent: just output the set.
- Easier to find: $g(S)=\mathbb{E}_{A \sim p}[f(S \cap A)]$ is often submodular.

Concern:

Why care about adaptivity gaps?

Adaptive strategy concerns:

- Can be exponentially sized.
- How to compute?
- How to represent?

Best non-adaptive: select a feasible Probed $\in \mathcal{C}$ in the beginning to

$$
\max \mathbb{E}_{A \sim p}[f(\text { Probed } \cap A)]
$$

Benefits:

- Easier to represent: just output the set.
- Easier to find: $g(S)=\mathbb{E}_{A \sim p}[f(S \cap A)]$ is often submodular.

Concern: large adaptivity gap $:=\frac{\mathbb{E}[\text { Adap }]}{\mathbb{E}[\mathrm{NA}]}$.

Small adaptivity gap

- Assume α is small.

Question: For what constraints and functions is the gap small?

Outline

(1) Motivating example
(2) Problem definition
(3) Adaptivity gap
(4) Results
(5) Proof: Upper bound
(6) Conclusion

Our results

Theorem

Adaptivity gap is 2.

- Always gap ≤ 2, there exists an example where gap $=2$.
- Function $=$ monotone submodular.
- Constraints $=$ downward closed.
- Downward closed: If a set can be probed then also its subsets can.
- Submodular: E.g., \# of distinct elements.

Our results

Theorem

Adaptivity gap is 2.

- Always gap ≤ 2, there exists an example where gap $=2$.
- Function $=$ monotone submodular.
- Constraints $=$ downward closed.
- Downward closed: If a set can be probed then also its subsets can.
- Submodular: E.g., \# of distinct elements.

Theorem

Adaptivity gap is between $\Omega(\sqrt{k})$ and $O(k \log k)$.

- Function $=$ weighted rank of k-matroid intersection.
- Constraints $=$ downward closed.

Reference	Function	Constraints	Gap LB	Gap UB
[GN'13]	k_{1}-matroid intersection	k_{2}-matroid intersection		$O\left(\left(k_{1}+k_{2}\right)^{2}\right)$
[GNS'16]	k-matroid in- tersection	downward closed	$O\left(k^{4} \log k n\right)$	
[an'16]	monotone submodular	1-matroid	$\frac{e}{e-1} \approx 1.58$	$\frac{e}{e-1} \approx 1.58$
[GNS'17]	monotone submodular	downward closed	$1.58[$ [AN'16]	3

$\left.\begin{array}{cllcc}\text { Reference } & \text { Function } & \text { Constraints } & \text { Gap LB } & \text { Gap UB } \\ \hline \text { [GN'13] } & \begin{array}{l}k_{1} \text {-matroid } \\ \text { intersection }\end{array} & \begin{array}{l}k_{2} \text {-matroid } \\ \text { intersection }\end{array} & & O\left(\left(k_{1}+k_{2}\right)^{2}\right) \\ \text { [GNS'16] } & \begin{array}{l}k \text {-matroid in- } \\ \text { tersection }\end{array} & \begin{array}{l}\text { downward } \\ \text { closed }\end{array} & O\left(k^{4} \log k n\right) \\ \text { [Gn'16] } & \begin{array}{l}\text { monotone } \\ \text { submodular }\end{array} & \text { 1-matroid } & \frac{e}{e-1} \approx 1.58 & \frac{e}{e-1} \approx 1.58 \\ \text { this paper } & \begin{array}{l}\text { monotone } \\ \text { submodular } \\ \text { monotone } \\ \text { submodular } \\ \text { this paper } \\ k \text {-matroid in- } \\ \text { tersection }\end{array} & \begin{array}{l}\text { downward } \\ \text { closed }\end{array} & \begin{array}{l}\text { downward } \\ \text { closed } \\ \text { downward } \\ \text { closed }\end{array} & 1.58[A N ' 16]\end{array}\right] 3$

Outline

(1) Motivating example
(2) Problem definition
(3) Adaptivity gap
(4) Results
(5) Proof: Upper bound
(6) Conclusion

Upper bound: Proof Steps

Theorem
Adaptivity gap is at most 2.

- Function $=$ monotone submodular.
- Constraints $=$ downward closed.

Steps:

Upper bound: Proof Steps

Theorem
Adaptivity gap is at most 2.

- Function $=$ monotone submodular.
- Constraints $=$ downward closed.

Steps:
(1) Transform an adaptive strategy to a non-adaptive.
(2) Prove $\mathbb{E}[N A] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Upper bound: Two ideas

(1) Take a random root-leaf path

- Only show existence

Upper bound: Two ideas

(1) Take a random root-leaf path

- Only show existence

Blue path prob $=0.7 \cdot 0.5 \cdot 0.7$

- Here Adap gets 2 .
- Here NA gets $0.3+0.5+0.7=1.5$
- Goal to show: $\mathbb{E}[N A]=\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Upper bound: Two ideas

(1) Take a random root-leaf path

- Only show existence

(2) Node-by-node induction
- Convert NA to a "greedy" algorithm for induction.

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.
Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.
Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

$$
\operatorname{Adap}=\mathbb{E}_{l}\left[f(I)+\operatorname{Adap}\left(T_{l}, f_{l}\right)\right]
$$

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

$$
\begin{aligned}
\text { Adap } & =\mathbb{E}_{l}\left[f(I)+\operatorname{Adap}\left(T_{I}, f_{l}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[f(I \cup R)+\operatorname{Adap}\left(T_{I}, f_{l \cup R}\right)\right]
\end{aligned}
$$

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

$$
\begin{aligned}
\text { Adap } & =\mathbb{E}_{l}\left[f(I)+\operatorname{Adap}\left(T_{l}, f_{l}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[f(I \cup R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[2 f(R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] .
\end{aligned}
$$

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

$$
\begin{aligned}
\text { Adap } & =\mathbb{E}_{l}\left[f(I)+\operatorname{Adap}\left(T_{l}, f_{l}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[f(I \cup R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[2 f(R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] .
\end{aligned}
$$

Non-adaptive:

$$
N A=\mathbb{E}_{I, R}\left[f(R)+N A\left(T_{l}, f_{R}\right)\right]
$$

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

$$
\begin{aligned}
\text { Adap } & =\mathbb{E}_{l}\left[f(I)+\operatorname{Adap}\left(T_{l}, f_{l}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[f(I \cup R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[2 f(R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] .
\end{aligned}
$$

Non-adaptive:

$$
\begin{aligned}
N A & =\mathbb{E}_{I, R}\left[f(R)+N A\left(T_{l}, f_{R}\right)\right] \\
& \geq \mathbb{E}_{I, R}\left[f(R)+N A\left(T_{I}, f_{l \cup R}\right)\right]
\end{aligned}
$$

Upper bound: Proof

Goal: $\mathbb{E}[$ RandomPath $] \geq \frac{1}{2} \mathbb{E}[$ Adap $]$.

Def: $I=$ is the root active in Adap?
Def: $R=$ is the root active in NA?

$$
\begin{aligned}
\text { Adap } & =\mathbb{E}_{l}\left[f(I)+\operatorname{Adap}\left(T_{l}, f_{l}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[f(I \cup R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] \\
& \leq \mathbb{E}_{I, R}\left[2 f(R)+\operatorname{Adap}\left(T_{l}, f_{l \cup R}\right)\right] .
\end{aligned}
$$

Non-adaptive:

$$
\begin{aligned}
N A & =\mathbb{E}_{l, R}\left[f(R)+N A\left(T_{l}, f_{R}\right)\right] \\
& \geq \mathbb{E}_{l, R}\left[f(R)+N A\left(T_{l}, f_{l \cup R}\right)\right]
\end{aligned}
$$

Induction hypothesis:

$$
\mathbb{E}_{l, R}\left[\operatorname{Adap}\left(T_{i}, f_{l \cup R}\right)\right] \leq 2 \cdot \mathbb{E}_{I, R}\left[N A\left(T_{l}, f_{l \cup R}\right)\right]
$$

Outline

(1) Motivating example
(2) Problem definition
(3) Adaptivity gap
(4) Results
(5) Proof: Upper bound
(6) Conclusion

Conclusion

Generalizations of stochastic probing:

- Multi-value setting.
- k-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Conclusion

Generalizations of stochastic probing:

- Multi-value setting.
- k-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Open problem:

- $O(\operatorname{poly} \log (n))$ for subadditive functions?

Conclusion

Generalizations of stochastic probing:

- Multi-value setting.
- k-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Open problem:

- $O($ polylog $(n))$ for subadditive functions?

Main takeaways:

- Stochastic probing captures many natural problems.
- Often have small adaptivity gap.
- Focus on, much simpler, non-adaptive strategies.

Conclusion

Generalizations of stochastic probing:

- Multi-value setting.
- k-extendible systems.
- XOS functions [GNS'17] (submodular \subseteq XOS \subseteq subadditive).

Open problem:

- $O($ polylog $(n))$ for subadditive functions?

Main takeaways:

- Stochastic probing captures many natural problems.
- Often have small adaptivity gap.
- Focus on, much simpler, non-adaptive strategies.

Thank you! Questions?

Reference	Function	Constraints	Gap LB	Gap UB
[GN'13]	k_{1}-matroid intersection	k_{2}-matroid intersection	$k_{1}+k_{2}$	$O\left(\left(k_{1}+k_{2}\right)^{2}\right)$
[GNS'16]	k-matroid in- tersection downward closed		$O\left(k^{4} \log k n\right)$	
[AN'16]	monotone submodular	1-matroid	$\frac{e}{e-1} \approx 1.58$	$\frac{e}{e-1} \approx 1.58$
[GNS'17]	monotone submodular	downward closed	3	1.58 via [AN'16]
this paper	monotone submodular this paper k-matroid in- tersection	dosed downward closed	k	$O(k \log k)$

[^0]: ${ }^{2}$ Slides are based on a deck by Sahil Singla.

