Universally-Optimal (1 + &)-Approximate Shortest
Path and Transshipment in the Distributed Setting

Goran Zuzic

ETH Zurich

21 Oct 2021

Gramoz Goranci Bernhard Haeupler Xiaorui Sun Mingquan Ye

u]
@
I
I
i

1/17

(SSSP).

We want to solve the single-source shortest path problem

@ Given a n-vertex undirected graph where edges have weights in
the set {1,2,..., no(l)}. Compute shortest path from source
to all other nodes.

2/17

(SSSP).

We want to solve the single-source shortest path problem

@ Given a n-vertex undirected graph where edges have weights in
the set {1,2,...,n°M}. Compute shortest path from source
to all other nodes.

2/17

(SSSP).

We want to solve the single-source shortest path problem

@ Given a n-vertex undirected graph where edges have weights in
the set {1,2,...,n°M}. Compute shortest path from source
to all other nodes.

e

i
One of the oldest problems in computer science.
Sequential setting .. easy! Dijkstra’s famous O(m + n)-time
algorithm is optimal.

2/17

We want to solve the single-source shortest path problem
(SSSP).
e Given a n-vertex undirected graph where edges have weights in

the set {1,2,...,n°M}. Compute shortest path from source
to all other nodes.

|

One of the oldest problems in computer science.

Sequential setting .. easy! Dijkstra’'s famous é(m + n)-time
algorithm is optimal.

What about parallel or distributed settings? The problem seems

much harder, processing long paths that fork and merge seems
inherently sequential at first glance. O «F> «Zr «Tr E

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

Communication model: CONGEST [Peleg; 2000]‘

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

’Communication model: CONGEST [Peleg; 2000] ‘

Figure: Network G.

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

’Communication model: CONGEST [Peleg; 2000] ‘

@ Communication in synchronous
O rounds. Local computation inbetween.

Figure: Network G.

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

’Communication model: CONGEST [Peleg; 2000] ‘

@ Communication in synchronous

O rounds. Local computation inbetween.
W Het @ Each round neighbors exchange
/ - - O(1)-bit msgs.

Alg A N\ Al A

[[

\ ANgA S N\ Ag4
[[

Figure: Network G.

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

’Communication model: CONGEST [Peleg; 2000] ‘

@ Communication in synchronous

O rounds. Local computation inbetween.
W ne @ Each round neighbors exchange
/ - - O(1)-bit msgs.

Alg A N\ Alg A

O O @ Initially: nodes know only their
\ RN neighbors' IDs and incident weights.

(I [

Figure: Network G.

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a

source s € V (and t € V).

’Communication model: CONGEST [Peleg; 2000] ‘

Figure: Network G.

Communication in synchronous
rounds. Local computation inbetween.

Each round neighbors exchange

O(1)-bit msgs.

Initially: nodes know only their
neighbors' IDs and incident weights.

Objective: minimize # rounds.

3/17

’What is the distributed setting?‘

@ Communication: Network topology (read: undirected graph)
G = (V, E) with |V| = n nodes and hop-diameter D.

@ Problem-specific input: A set of weights (SSSP inputs) w and a
source s € V (and t € V).

’Communication model: CONGEST [Peleg; 2000] ‘

@ Communication in synchronous

O rounds. Local computation inbetween.
W ne @ Each round neighbors exchange
/ - - O(1)-bit msgs.

Alg A N\ Alg A

O O @ Initially: nodes know only their
\ RN neighbors' IDs and incident weights.

(I [

@ Objective: minimize # rounds.

Figure: Network G. @ Note: D does not depend on the

weights.

3/17

Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel _
SSSP algorithm use techniques from AN

continuous optimization. L
ParaIIeI. . ~ [LI, 2020]
(1 + €)-apx with O(1) depth and O(m) work. [ASZ; 2020]

Distributed.

4/17

Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel _
SSSP algorithm use techniques from AN
continuous optimization. ‘

Parallel.)) [Li; 2020]
(1 + €)-apx with O(1) depth and O(m) work. [ASZ; 2020]
Distributed.

(1 + ¢)-apx in O(y/n+ D) rounds. [BFKL; 2016]

4/17

Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel
SSSP algorithm use techniques from AN

continuous optimization.

Parallel.)) [Li; 2020]

(1 + €)-apx with O(1) depth and O(m) work. [ASZ; 2020]
Distributed.

(1 + ¢)-apx in O(y/n+ D) rounds. [BFKL; 2016]
n°M-apx in OPT(G) - n°®) rounds. [Haeupler, Li; 2018]

What is OPT(G)?
Def: Any correct SSSP algorithm on G requires > OPT(G) rounds.

4/17

Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel
SSSP algorithm use techniques from g
continuous optimization.

Parallel. [Li; 2020]

(1 + £)-apx with O(1) depth and O(m) work. [ASZ; 2020]
Distributed.

(1 + ¢)-apx in O(y/n+ D) rounds. [BFKL; 2016]
n°M-apx in OPT(G) - n°®) rounds. [Haeupler, Li; 2018]
(1 + €)-apx in OPT(G) - n°®) rounds. This talk.

What is OPT(G)?
Def: Any correct SSSP algorithm on G requires > OPT(G) rounds.

4/17

Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel
SSSP algorithm use techniques from g
continuous optimization. .

Parallel. [Li; 2020]

(1 + £)-apx with O(1) depth and O(m) work. [ASZ; 2020]
Distributed.

(1 + ¢)-apx in O(y/n+ D) rounds. [BFKL; 2016]
n°M-apx in OPT(G) - n°®) rounds. [Haeupler, Li; 2018]
(1 + €)-apx in OPT(G) - n°®) rounds. This talk.

What is OPT(G)?
Def: Any correct SSSP algorithm on G requires > OPT(G) rounds.

Any (OPT(G) - n°M)-round algo is called (almost) universally optimal.

4/17

Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel
SSSP algorithm use techniques from g0
continuous optimization. e

Parallel. [Li; 2020]

(1 + £)-apx with O(1) depth and O(m) work. [ASZ; 2020]
Distributed.

(1 + ¢)-apx in O(y/n+ D) rounds. [BFKL; 2016]
n°M-apx in OPT(G) - n°®) rounds. [Haeupler, Li; 2018]
(1 + €)-apx in OPT(G) - n°®) rounds. This talk.

What is OPT(G)?

Def: Any correct SSSP algorithm on G requires > OPT(G) rounds.
Any (OPT(G) - n°M)-round algo is called (almost) universally optimal.
Thm: OPT(G) =gy ShortcutQuality(G) [Haeupler, Wajc, Zuzic; 2021]

4/17

© Main Ideas
@ |dea 1: Transshipment generalizes shortest path
@ |dea 2: Transshipment boosting
@ Idea 3: Approximately Solving Transshipment
@ |dea 4: Distributed Implementation

5/17

(Or (Fr <=r <=

Q>
6/17

|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.

6/17

|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that

satisfies the demands.
0

0 0
veights (subdivide for general we
\'i

h'

0 0

6/17

|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.

6/17

|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.

Also known as: uncapacitated min-cost flow, Wasserstein metric,
optimal transport, transshipment.

6/17

|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.

Also known as: uncapacitated min-cost flow, Wasserstein metric,
optimal transport, transshipment.

Note. Generalizes (s — t) shortest path. (Also generalizes SSSP.)

+1

6/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

Primal.

U3

Uy

Dual.

v2
Vi
Va

Vs

-1 -1

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

Primal.

U3

Uy

[min [If]], :

Dual.

v2
Vi
Va

Vs

e e
+1
+1

-1 -1

-1 ...
+1 ...

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.

Note: we orient edges arbitrarily.

() U3

Uy

Primal.
[min [[f], : Bf = d|

fe = 0 if no flow along e
fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction

Dual.

v2
Vi
Va

Vs

e e
+1
+1

-1 -1

-1 ...
+1 ...

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.

Note: we orient edges arbitrarily.

U2 U3
v
! €2 €3
€1
Us Vg

Primal.
[min [[f], : Bf = d|

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

Dual.

v2
Vi
Va

Vs

e e
+1

+1
-1 -1

-1 ...
+1 ...

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.

Note: we orient edges arbitrarily.

() U3

V4

Primal.
[min [[f], : Bf = d|

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

Dual.

v2
Vi
Va

Vs

e e
+1
+1

-1 -1

-1 ...
+1 ...

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

€ =3 €3
U2 U3 " 41
va +1
U1 € €3 B= -1 ...
va +1 ...
€1 vs -1 -1
Vs Vg
Primal. Dual.

[min [[f], : Bf = d|

maxy (d, @) : ||BT¢||oo <1

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.

Note: we orient edges arbitrarily.

() U3

V4

Primal.
[min [[f], : Bf = d|

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

v2

Va

Vs

Dual.

ey €2 e3
+1
+1
-1 ...
+1 ...
-1 -1

maxy (d, @) : ||BT¢||oo <1

¢, = potential (height) of v

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.

Note: we orient edges arbitrarily.

() U3

V4

Primal.
[min [[f], : Bf = d|

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

€1 e e3

v +1
v2 +1

B=w -1 ...
va +1 ...
vs -1 -1

Dual.

maxy (d, @) : ||BT¢||oo <1

¢, = potential (height) of v
(BT ¢)e = ¢ — ¢p is height difference

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

€1 e e3

U2 U3 " 41
v 41
U1 €9 es3 B= v -1 ...
v 11
€1 vs -1 -1
[I
Primal. Dual.

[min [[f], : Bf = d|

maxy (d, @) : ||BT¢||oo <1

¢, = potential (height) of v
(BT ¢)e = ¢ — ¢p is height difference
||BT¢Hoo < 1 height diff must be small

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

7/17

Transshipment: a primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.

Note: we orient edges arbitrarily.

U2 U3

Vs I

Primal.
[min [[f], : Bf = d|

fe = 0 if no flow along e

fo > 0 if flow in same direction as e
fo < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

Va2

Vs

Dual.

+1
+1
-1 ...
+1 ...
-1 -1

maxy (d, @) : ||BT¢||oo <1

¢, = potential (height) of v
(BT ¢)e = ¢ — ¢p is height difference

||BT¢Hoo < 1 height diff must be small
SP .. ¢} = distance of v from source

7/17

© Main Ideas

@ |dea 2: Transshipment boosting

8/17

|dea 2: Transshipment boosting

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

9/17

|dea 2: Transshipment boosting

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

Primal. Dual.
ming |[|f]]; : Bf =d maxy (d,¢) : HBT¢HOO <1

9/17

|dea 2: Transshipment boosting

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

Primal. Dual.
ming |[|f]]; : Bf =d maxy (d,¢) : HBT¢HOO <1

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])

Fix G. Suppose we are given an oracle Og(-) which, given a
demand d, outputs an a-approximate feasible dual Og(d). There is
an algorithm that produces a (1 + €)-approximate feasible dual by
calling Og(-) at most poly(c,e™2, log n) times.

9/17

|dea 2: Transshipment boosting

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

Primal. Dual.
ming |[|f]]; : Bf =d maxy (d,¢) : HBT¢HOO <1

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])

Fix G. Suppose we are given an oracle Og(-) which, given a
demand d, outputs an a-approximate feasible dual Og(d). There is
an algorithm that produces a (1 + €)-approximate feasible dual by
calling Og(-) at most poly(c,e™2, log n) times.

Corollary

Given such a (dual) n°®)-approximation oracle, we can solve
(1+ ﬁ)—approximate transshipment in n°) oracle calls.

9/17

© Main Ideas

@ Idea 3: Approximately Solving Transshipment

10/17

|dea 3: Approximately Solving Transshipment

’Goal: find an approximateduﬁfsolution‘

Prerequisite: Low-diameter decomposition (LDD).

11/17

|dea 3: Approximately Solving Transshipment

’Goal: find an approximateduﬁfsolution‘

Prerequisite: Low-diameter decomposition (LDD).

Definition
For a graph G, a low-diameter decomposition (LDD) of
radius p is a distribution over node partitions into clusters
V =S5 U...U Sk along with centers ¢; € S1,...,ck € Sk
such that:

@ For each /, the center ¢; is within distance p of every

other node in the induced subgraph G[S;], w.h.p.
@ For all x,y € V, the probability they are in different

. dist
clusters is at most 2viogn . w.

[Miller, Peng, Xu;
2013]

11/17

|dea 3: Approximately Solving Transshipment

’Goal: find an approximateduﬁfsolution‘

Prerequisite: Low-diameter decomposition (LDD).

Definition

For a graph G, a low-diameter decomposition (LDD) of
radius p is a distribution over node partitions into clusters
V =S5 U...U Sk along with centers ¢; € S1,...,ck € Sk
such that:

@ For each /, the center ¢; is within distance p of every
other node in the induced subgraph G[S;], w.h.p.

@ For all x,y € V, the probability they are in different

. dist
clusters is at most 2viogn . w.

Theorem (Prior work [Haeupler, Li; 2018])

[Miller, Peng, Xu;
LDDs can be sampled in OPT(G)n°Y) CONGEST rounds. 2013

11/17

|dea 3: Approximately Solving Transshipment

Algorithm 0: Oblivious routing for TS.

O Let p:=20e"”* (LDD radius).

@ Sample an LDD with radius p'.

® Each v sends é—fraction of its demend
to the center of cluster containing v.

|dea 3: Approximately Solving Transshipment

Algorithm 0: Oblivious routing for TS.

O Let p:=20e"”* (LDD radius).

~

@ Sample an LDD with radius p'.

® Each v sends é—fraction of its demend
to the center of cluster containing v.

|dea 3: Approximately Solving Transshipment

Algorithm 0: Oblivious routing for TS.

O Let p:=20e"”* (LDD radius).

© Forj=12,..., g:=20gn”*
(1] SmnMeanLDD\Mﬂ1mdMSpﬂ
® Each v sends é—fraction of its demend
to the center of cluster containing v.
® Update the demand to reflect the
transport.

12/17

|dea 3: Approximately Solving Transshipment

Algorithm 0: Oblivious routing for TS.

O Let p:=20e"”* (LDD radius).

© Forj=12,..., g:=20gn”*
(1] SmnMeanLDD\Mﬂ1mdMSpﬂ
® Each v sends é—fraction of its demend
to the center of cluster containing v.
® Update the demand to reflect the
transport.

w

12/17

|dea 3: Approximately Solving Transshipment

Algorithm 0: Oblivious routing for TS.

O Let p:=20e"”* (LDD radius).
@ Fori=1,2,...,(logn)/* repeat the
following:

© Forj=12,..., g:=20gn”*
@ Sample an LDD with radius p'.
® Each v sends é—fraction of its demend
to the center of cluster containing v.
® Update the demand to reflect the
transport.

w

© Route all remaining demand to a common
node along any spanning tree.

When i = (log n)*/4, radius is p' = poly(n) and LDD has a single cluster. |

12/17

Analysis intuition.

’Question: how does OPT change between steps?

Fix u, v at distance £. Suppose at some step
d(u) = +1,d(v) = —1, d(all else) = 0. Clearly, OPT pefore = ¢.
Suppose we sampled an LDD of radius p. How does OPT change?

13/17

Analysis intuition.

’Question: how does OPT change between steps?

Fix u, v at distance £. Suppose at some step
d(u) = +1,d(v) = —1, d(all else) = 0. Clearly, OPT pefore = ¢.
Suppose we sampled an LDD of radius p. How does OPT change?

@ If u, v in same cluster, we are happy (the demand cancels out).

13/17

Analysis intuition.

’Question: how does OPT change between steps?

Fix u, v at distance £. Suppose at some step

d(u) = +1,d(v) = —1, d(all else) = 0. Clearly, OPT pefore = ¢.

Suppose we sampled an LDD of radius p. How does OPT change?
@ If u, v in same cluster, we are happy (the demand cancels out).
@ If u, v in different clusters, they are now at distance p + ¢ + p

apart.
o When /> p, this is still O(¢).

13/17

Analysis intuition.

’Question: how does OPT change between steps?

Fix u, v at distance £. Suppose at some step
d(u) = +1,d(v) = —1, d(all else) = 0. Clearly, OPT pefore = ¢.
Suppose we sampled an LDD of radius p. How does OPT change?

@ If u, v in same cluster, we are happy (the demand cancels out).
@ If u, v in different clusters, they are now at distance p + ¢ + p
apart.
o When /> p, this is still O(¢).
e When p > /. Remember that separation happens with
probability 2Vien . %. In expectation:

2\/Iogn . { . (2p+£) _ 2\/Iogn . { . O(p) _ 2\/Iogn . O(@)
P P

13/17

Analysis intuition.

’Question: how does OPT change between steps?

Fix u, v at distance £. Suppose at some step
d(u) =+41,d(v) = —1,d(all else) = 0. Clearly, OPT pefore = ¥.
Suppose we sampled an LDD of radius p. How does OPT change?
@ If u, v in same cluster, we are happy (the demand cancels out).
@ If u, v in different clusters, they are now at distance p + ¢ + p
apart.
o When /> p, this is still O(¢).
e When p > /. Remember that separation happens with
probability 2Vien . %. In expectation:

2\/@.é.(2p+£):2\/@-£~0(p):2\/@- o(0)
P P
In both cases, OPT increases by at most 2V!°8" factor. Hence
after (log n)1/# steps, it only increases by
(289 5 _ ot _ ot

13/17

Issue: On last slide, we proved the new OPT grows slowly .. BUT

only looked at a fixed “pair’ demand.

Claim

After repeating LDD sampling 2(1°8 n)¥/4 times, we get
concentration and it holds for all demands.

14 /17

Issue: On last slide, we proved the new OPT grows slowly ..

only looked at a fixed “pair’ demand.

Claim

After repeating LDD sampling 2(1°8 n)¥/4 times, we get
concentration and it holds for all demands.

BUT

Question: Why not simply start at p = poly(n)?
@ New OPT is OK in expectation.

14 /17

Issue: On last slide, we proved the new OPT grows slowly ..

only looked at a fixed “pair’ demand.

Claim

After repeating LDD sampling 2(1°8 n)¥/4 times, we get
concentration and it holds for all demands.

BUT

Question: Why not simply start at p = poly(n)?
@ New OPT is OK in expectation.

@ Reason 1: we would need poly(n) repetitions to get
concentration.

14 /17

Issue: On last slide, we proved the new OPT grows slowly ..

only looked at a fixed “pair’ demand.

Claim

After repeating LDD sampling 2(1°8 n)¥/4 times, we get
concentration and it holds for all demands.

BUT

Question: Why not simply start at p = poly(n)?
@ New OPT is OK in expectation.

@ Reason 1: we would need poly(n) repetitions to get
concentration.

14 /17

Issue: On last slide, we proved the new OPT grows slowly .. BUT
only looked at a fixed “pair’ demand.

Claim

After repeating LDD sampling 2(1°8 n)¥/4 times, we get
concentration and it holds for all demands.

Question: Why not simply start at p = poly(n)?
@ New OPT is OK in expectation.

@ Reason 1: we would need poly(n) repetitions to get
concentration.

@ Reason 2: the transport cost in this single step would be too
high.

14 /17

© Main Ideas

@ |dea 4: Distributed Implementation

15/17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:

16 /17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
@ Each node chooses a private O(1)-bit value x,.

16 /17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
@ Each node chooses a private O(1)-bit value x,.
@ We contract a subset of edges.

16 /17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
@ Each node chooses a private O(1)-bit value x,.
@ We contract a subset of edges.
© For each supernode S C V, define x5 := @, s xv.

16 /17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
@ Each node chooses a private O(1)-bit value x,.
@ We contract a subset of edges.
© For each supernode S C V, define x5 := @, s xv.
@ (Each node in) each supernode receives an aggregate of
adjacent supernodes’ values.

16 /17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
@ Each node chooses a private O(1)-bit value x,.
@ We contract a subset of edges.
© For each supernode S C V, define x5 := @, s xv.
@ (Each node in) each supernode receives an aggregate of
adjacent supernodes’ values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in OPT(G) - n°()

CONGEST rounds.

16 /17

|dea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
@ Each node chooses a private O(1)-bit value x,.
@ We contract a subset of edges.
© For each supernode S C V, define x5 := @, s xv.
@ (Each node in) each supernode receives an aggregate of
adjacent supernodes’ values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in OPT(G) - n°()
CONGEST rounds.

Corollary

Transshipment can be solved in n°Y) Minor-Aggregation rounds.
Hence it can be implemented in OPT(G) - n°Y) CONGEST rounds.

16 /17

Idea 1: don't solve SSSP. Solve transshipment.

40> «F»r « =

> <

it
v

Do
17/17

Conclusion

Idea 1: don't solve SSSP. Solve transshipment.

Idea 2: transshipment can be boosted, hence we only need to
compute a n°M-approximation.

17/17

Conclusion

Idea 1: don't solve SSSP. Solve transshipment.

Idea 2: transshipment can be boosted, hence we only need to
compute a n°M-approximation.

Idea 3: oblivious routing for transshipment. Find LDD, send to
center, repeat many times, increaase LDD radius until we consume
the entire graph.

17/17

Conclusion

Idea 1: don't solve SSSP. Solve transshipment.

Idea 2: transshipment can be boosted, hence we only need to
compute a n°M-approximation.

Idea 3: oblivious routing for transshipment. Find LDD, send to
center, repeat many times, increaase LDD radius until we consume
the entire graph.

Idea 4: implement in distributed setting using minor-aggregations.
Convert to a universally-optimal CONGEST algorithm.

17/17

Conclusion

Idea 1: don't solve SSSP. Solve transshipment.

Idea 2: transshipment can be boosted, hence we only need to
compute a n°M-approximation.

Idea 3: oblivious routing for transshipment. Find LDD, send to
center, repeat many times, increaase LDD radius until we consume
the entire graph.

Idea 4: implement in distributed setting using minor-aggregations.
Convert to a universally-optimal CONGEST algorithm.

Future directions: (1) lose polylog factors instead of n°(t), (2)
make deterministic.

17/17

Conclusion

Idea 1: don't solve SSSP. Solve transshipment.

Idea 2: transshipment can be boosted, hence we only need to
compute a n°M-approximation.

Idea 3: oblivious routing for transshipment. Find LDD, send to
center, repeat many times, increaase LDD radius until we consume
the entire graph.

Idea 4: implement in distributed setting using minor-aggregations.
Convert to a universally-optimal CONGEST algorithm.

Future directions: (1) lose polylog factors instead of n°(t), (2)
make deterministic.

Thank youl

17/17

	Introduction
	Main Ideas
	Idea 1: Transshipment generalizes shortest path
	Idea 2: Transshipment boosting
	Idea 3: Approximately Solving Transshipment
	Idea 4: Distributed Implementation

	Conclusion

