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We want to solve the single-source shortest path problem
(SSSP).

Given a n-vertex undirected graph where edges have weights in
the set {1, 2, . . . , nO(1)}. Compute shortest path from source
to all other nodes.

One of the oldest problems in computer science.
Sequential setting .. easy! Dijkstra’s famous Õ(m + n)-time
algorithm is optimal.

What about parallel or distributed settings? The problem seems
much harder, processing long paths that fork and merge seems
inherently sequential at first glance.

2 / 17



We want to solve the single-source shortest path problem
(SSSP).

Given a n-vertex undirected graph where edges have weights in
the set {1, 2, . . . , nO(1)}. Compute shortest path from source
to all other nodes.

One of the oldest problems in computer science.
Sequential setting .. easy! Dijkstra’s famous Õ(m + n)-time
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What is the distributed setting?

Communication: Network topology (read: undirected graph)
G = (V ,E ) with |V | = n nodes and hop-diameter D.

Problem-specific input: A set of weights (SSSP inputs) w and a
source s ∈ V (and t ∈ V ).

Communication model: CONGEST [Peleg; 2000]

Communication in synchronous
rounds. Local computation inbetween.

Each round neighbors exchange
Õ(1)-bit msgs.

Initially: nodes know only their
neighbors’ IDs and incident weights.

Objective: minimize # rounds.

Note: D does not depend on the
weights.
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Today: SSSP that can be parallelized and distributed efficiently.

Recent results that develop fastest parallel
SSSP algorithm use techniques from
continuous optimization.

Parallel.
(1+ ε)-apx with Õ(1) depth and Õ(m) work.

[Li; 2020]
[ASZ; 2020]

Distributed.

(1+ ε)-apx in Õ(
√
n + D) rounds. [BFKL; 2016]

no(1)-apx in OPT (G ) · no(1) rounds. [Haeupler, Li; 2018]
(1+ ε)-apx in OPT (G ) · no(1) rounds. This talk.

What is OPT (G )?
Def: Any correct SSSP algorithm on G requires ≥ OPT (G ) rounds.
Any

(
OPT (G ) · no(1)

)
-round algo is called (almost) universally optimal.

Thm: OPT (G ) =Θ̃(1) ShortcutQuality(G ) [Haeupler, Wajc, Zuzic; 2021]
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1 Introduction

2 Main Ideas
Idea 1: Transshipment generalizes shortest path
Idea 2: Transshipment boosting
Idea 3: Approximately Solving Transshipment
Idea 4: Distributed Implementation

3 Conclusion
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Idea 1: Transshipment generalizes shortest path

Transshipment.

Given a graph G = (V ,E ) and a demand vector
d ∈ RV satisfying

∑
v d(v) = 0. Find a flow of minimum cost that

satisfies the demands.

Also known as: uncapacitated min-cost flow, Wasserstein metric,
optimal transport, transshipment.

Note. Generalizes (s − t) shortest path. (Also generalizes SSSP.)

+1

−1
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Transshipment: a primal-dual formulation

Write the graph G = (V ,E ) using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

v1

v2 v3

v4v5

e1

e2 e3 B =



e1 e2 e3 ...

v1 +1 . . .
v2 +1 . . .
v3 −1 . . .
v4 +1 . . .
v5 −1 −1 . . .



Primal. Dual.

minf ‖f ‖1 : Bf = d

fe = 0 if no flow along e

fe > 0 if flow in same direction as e
fe < 0 if flow in opposite direction
(Bf )v = 0 if flow conserved at v
SP .. f ∗ = shortest path from s to t

maxφ 〈d , φ〉 :
∥∥B>φ∥∥∞ ≤ 1.

φv = potential (height) of v
(BTφ)e = φa − φb is height difference∥∥B>φ∥∥∞ ≤ 1 height diff must be small
SP .. φ∗v = distance of v from source
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v4 +1 . . .
v5 −1 −1 . . .



Primal. Dual.
minf ‖f ‖1 : Bf = d

fe = 0 if no flow along e

fe > 0 if flow in same direction as e
fe < 0 if flow in opposite direction
(Bf )v = 0 if flow conserved at v
SP .. f ∗ = shortest path from s to t

maxφ 〈d , φ〉 :
∥∥B>φ∥∥∞ ≤ 1.

φv = potential (height) of v
(BTφ)e = φa − φb is height difference∥∥B>φ∥∥∞ ≤ 1 height diff must be small
SP .. φ∗v = distance of v from source

7 / 17
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Idea 2: Transshipment boosting

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

Primal.
minf ‖f ‖1 : Bf = d

Dual.
maxφ 〈d , φ〉 :

∥∥B>φ∥∥∞ ≤ 1.

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])

Fix G . Suppose we are given an oracle OG (·) which, given a
demand d , outputs an α-approximate feasible dual OG (d). There is
an algorithm that produces a (1+ ε)-approximate feasible dual by
calling OG (·) at most poly(α, ε−1, log n) times.

Corollary

Given such a (dual) no(1)-approximation oracle, we can solve
(1+ 1

no(1) )-approximate transshipment in no(1) oracle calls.
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Idea 3: Approximately Solving Transshipment

Goal: find an approximate��dual solution

Prerequisite: Low-diameter decomposition (LDD).

Definition

For a graph G , a low-diameter decomposition (LDD) of
radius ρ is a distribution over node partitions into clusters
V = S1 t . . . t Sk along with centers c1 ∈ S1, . . . , ck ∈ Sk
such that:

1 For each i , the center ci is within distance ρ of every
other node in the induced subgraph G [Si ], w.h.p.

2 For all x , y ∈ V , the probability they are in different
clusters is at most 2

√
log n · distG (u,v)

ρ .

Theorem (Prior work [Haeupler, Li; 2018])

LDDs can be sampled in OPT (G )no(1) CONGEST rounds.

[Miller, Peng, Xu;
2013]
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Idea 3: Approximately Solving Transshipment

Algorithm 0: Oblivious routing for TS.

1 Let ρ := 2(log n)3/4
(LDD radius).

2 For i = 1, 2, . . . , (log n)1/4 repeat the
following:

1 For j = 1, 2, . . . , g := 2(log n)3/4
.

1 Sample an LDD with radius ρi .
2 Each v sends 1

g
-fraction of its demend

to the center of cluster containing v .

2 Update the demand to reflect the
transport.

3 Route all remaining demand to a common
node along any spanning tree.

When i = (log n)1/4, radius is ρi = poly(n) and LDD has a single cluster.
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Analysis intuition.

Question: how does OPT change between steps?

Fix u, v at distance `. Suppose at some step
d(u) = +1, d(v) = −1, d(all else) = 0. Clearly, OPTbefore = `.
Suppose we sampled an LDD of radius ρ. How does OPT change?

If u, v in same cluster, we are happy (the demand cancels out).
If u, v in different clusters, they are now at distance ρ+ `+ ρ
apart.

When `� ρ, this is still O(`).
When ρ� `. Remember that separation happens with
probability 2

√
log n · `ρ . In expectation:

2
√

log n · `
ρ
· (2ρ+ `) = 2

√
log n · `

ρ
· O(ρ) = 2

√
log n · O(`)

In both cases, OPT increases by at most 2
√

log n factor. Hence
after (log n)1/4 steps, it only increases by(

2
√

log n
)(log n)1/4

= 2(log n)3/4
= no(1)

.
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Issue: On last slide, we proved the new OPT grows slowly .. BUT
only looked at a fixed “pair” demand.

Claim

After repeating LDD sampling 2(log n)3/4
times, we get

concentration and it holds for all demands.

Question: Why not simply start at ρ = poly(n)?
New OPT is OK in expectation.
Reason 1: we would need poly(n) repetitions to get
concentration.
Reason 2: the transport cost in this single step would be too
high.

14 / 17



Issue: On last slide, we proved the new OPT grows slowly .. BUT
only looked at a fixed “pair” demand.

Claim

After repeating LDD sampling 2(log n)3/4
times, we get

concentration and it holds for all demands.

Question: Why not simply start at ρ = poly(n)?
New OPT is OK in expectation.

Reason 1: we would need poly(n) repetitions to get
concentration.
Reason 2: the transport cost in this single step would be too
high.

14 / 17



Issue: On last slide, we proved the new OPT grows slowly .. BUT
only looked at a fixed “pair” demand.

Claim

After repeating LDD sampling 2(log n)3/4
times, we get

concentration and it holds for all demands.

Question: Why not simply start at ρ = poly(n)?
New OPT is OK in expectation.
Reason 1: we would need poly(n) repetitions to get
concentration.

Reason 2: the transport cost in this single step would be too
high.

14 / 17



Issue: On last slide, we proved the new OPT grows slowly .. BUT
only looked at a fixed “pair” demand.

Claim

After repeating LDD sampling 2(log n)3/4
times, we get

concentration and it holds for all demands.

Question: Why not simply start at ρ = poly(n)?
New OPT is OK in expectation.
Reason 1: we would need poly(n) repetitions to get
concentration.

Reason 2: the transport cost in this single step would be too
high.

14 / 17



Issue: On last slide, we proved the new OPT grows slowly .. BUT
only looked at a fixed “pair” demand.

Claim

After repeating LDD sampling 2(log n)3/4
times, we get

concentration and it holds for all demands.

Question: Why not simply start at ρ = poly(n)?
New OPT is OK in expectation.
Reason 1: we would need poly(n) repetitions to get
concentration.
Reason 2: the transport cost in this single step would be too
high.

14 / 17



1 Introduction

2 Main Ideas
Idea 1: Transshipment generalizes shortest path
Idea 2: Transshipment boosting
Idea 3: Approximately Solving Transshipment
Idea 4: Distributed Implementation

3 Conclusion

15 / 17



Idea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:

1 Each node chooses a private Õ(1)-bit value xv .
2 We contract a subset of edges.
3 For each supernode S ⊆ V , define xS :=

⊕
x∈S xv .

4 (Each node in) each supernode receives an aggregate of
adjacent supernodes’ values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in OPT (G ) · no(1)

CONGEST rounds.

Corollary

Transshipment can be solved in no(1) Minor-Aggregation rounds.
Hence it can be implemented in OPT (G ) · no(1) CONGEST rounds.
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2 We contract a subset of edges.
3 For each supernode S ⊆ V , define xS :=

⊕
x∈S xv .

4 (Each node in) each supernode receives an aggregate of
adjacent supernodes’ values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in OPT (G ) · no(1)

CONGEST rounds.

Corollary

Transshipment can be solved in no(1) Minor-Aggregation rounds.
Hence it can be implemented in OPT (G ) · no(1) CONGEST rounds.

16 / 17



Idea 4: Distributed Implementation

Designing distributed algorithms in CONGEST is hard. We propose
a new model.

Distributed Minor-Aggregation model. In each round:
1 Each node chooses a private Õ(1)-bit value xv .
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2 We contract a subset of edges.
3 For each supernode S ⊆ V , define xS :=

⊕
x∈S xv .

4 (Each node in) each supernode receives an aggregate of
adjacent supernodes’ values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in OPT (G ) · no(1)

CONGEST rounds.

Corollary

Transshipment can be solved in no(1) Minor-Aggregation rounds.
Hence it can be implemented in OPT (G ) · no(1) CONGEST rounds.

16 / 17



Conclusion

Idea 1: don’t solve SSSP. Solve transshipment.

Idea 2: transshipment can be boosted, hence we only need to
compute a no(1)-approximation.

Idea 3: oblivious routing for transshipment. Find LDD, send to
center, repeat many times, increaase LDD radius until we consume
the entire graph.

Idea 4: implement in distributed setting using minor-aggregations.
Convert to a universally-optimal CONGEST algorithm.

Future directions: (1) lose polylog factors instead of no(1), (2)
make deterministic.

Thank you!
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