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Original motivation

We want to solve the single-source shortest path problem
(SSSP).

Given an undirected graph where edges have weights.
Compute shortest path from source to all other nodes.

One of the oldest problems in computer science.
Sequential setting .. easy! Dijkstra’s famous Õ(m + n)-time
algorithm is optimal (modulo log).

What about parallel or distributed settings? The problem seems
much harder: Dijkstra fails miserably.
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In these settings, significant progress has been made on the
(1+ ε)-approximate shortest path problem.

Main ideas:

Hopset: Add a small number of edges to a graph such that
original shortest paths are (1+ ε)-approximated with new
paths with small number of hops. (Figure taken from
Cohen’00)

Continuous optimization: (Today) Generalize the shortest
path to transshipment. Find an bad approximate solution and
boost it to an (1+ ε)-approximate.
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Recent wins of the continious-optimization approach

Recent results based on continuous
optimization.

Parallel.
(1+ ε)-apx with Õ(1) depth and Õ(m)
work.
(1+ ε)-apx deterministic with Õ(1) depth
and Õ(m) work.

[Li; 2020]
[ASZ; 2020]
[RGHZL; 2022]

Distributed.

(1+ ε)-apx in OPT (G ) · no(1) rounds. [ZGYHS’22].
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2 Main Aspects of the Solution
Idea 1: Transshipment generalizes shortest path
Notation: Consider the LP primal-dual formulation
Idea 2: Transshipment boosting with duals
Idea 3: Multiplicative weights
Idea 4: Self-reduction of transshipment and consequences

3 Conclusion

5 / 16



Idea 1: Transshipment generalizes shortest path

Transshipment.

Given a graph G = (V ,E ) and a demand vector
d ∈ RV satisfying

∑
v d(v) = 0. Find a flow of minimum cost that

satisfies the demands.

Also known as: uncapacitated min-cost flow, earth mover’s
distance, Wasserstein metric, optimal transport, transshipment.

Note. Generalizes (s − t) shortest path. (Also generalizes SSSP.)
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Notation: Consider the LP primal-dual formulation

Write the graph G = (V ,E ) using the node-edge incidence matrix B.
Steps: (1) Orient edges arbitrarily. (2) For each arc, add column to B.

v1

v2 v3

v4v5

e1

e2 e3 B =



e1 e2 e3 ...

v1 +1 . . .
v2 +1 . . .
v3 −1 . . .
v4 +1 . . .
v5 −1 −1 . . .



Primal. Dual.

minf ‖f ‖1 : Bf = d

fe = 0 if no flow along e

fe > 0 if flow in same direction as e
fe < 0 if flow in opposite direction
(Bf )v = 0 if flow conserved at v
SP .. f ∗ = shortest path from s to t

maxφ 〈d , φ〉 :
∥∥B>φ∥∥∞ ≤ 1.

φv = potential (height) of v
(BTφ)e = φa − φb is height difference∥∥B>φ∥∥∞ ≤ 1 height diff must be small
SP .. φ∗v = distance of v from source
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Idea 2: Transshipment boosting with duals

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

Primal.
minf ‖f ‖1 : Bf = d

Dual.
maxφ 〈d , φ〉 :

∥∥B>φ∥∥∞ ≤ 1.

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])

Fix G . Suppose we are given an oracle OG (·) which, given a
demand d , outputs an α-approximate feasible dual OG (d). There is
an algorithm that produces a (1+ ε)-approximate feasible dual by
calling OG (·) at most poly(α, ε−1, log n) times.

Corollary

Given such a (dual) no(1)-approximation oracle, we can solve
(1+ 1

no(1)
)-approximate transshipment in no(1) oracle calls.
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Idea 3: Multiplicative weights

∃φ ||Aφ||∞ + �b, φ� ≤ γ

Feasibility task

Question: How many oracle calls?
The oracle will be queried poly(ε−1, log n, ρ) times.
Here, ρ ≥ ‖Aφ‖∞ called width of the oracle.
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Idea 4: Self-reduction of transshipment and consequences

Dual: maxφ 〈d , φ〉 such that
∥∥∥B>φ∥∥∥

∞
≤ 1

Binary search g : ∃φ, 〈d , φ〉 ≥ g ,
∥∥∥B>φ∥∥∥

∞
≤ 1

Rewrite: ∃φ, 1
g
〈d , φ〉 ≥ 1 ≥

∥∥∥B>φ∥∥∥
∞

Eliminate middle: ∃φ, 1
g
〈d , φ〉 ≥

∥∥∥B>φ∥∥∥
∞

Multiplicative weights: ∃φ, 1
g
〈d , φ〉 ≥

〈
p,B>φ

〉
+ ε

Rewrite: ∃φ,
〈
1
g
d − Bp︸ ︷︷ ︸
dresidual

, φ

〉
≥ ε

Oracle: ∃φ, 〈dresidual, φ〉 ≥ ε. Note: oracle width ρ ≥
∥∥BTφ

∥∥
∞

Equiv: ∃φ, 〈dresidual, φ〉 ≥ ε/ρ,
∥∥BTφ

∥∥
∞ ≤ 1
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Self-reduction consequences

Oracle: ∃φ, 〈dresidual, φ〉 ≥ ε/ρ,
∥∥BTφ

∥∥
∞ ≤ 1

Notes:
Q: Why does this make progress at all?

Ans: Note that we can
increase ρ, the final answer is still (1+ ε)-approximate but
runtime increases. Also: we can now handle approximations in
the answer. An α-approx changes the width of the oracle.
Approximation → runtime.

∃φ, 〈dresidual, φ〉 ≥ ε/(α · ρ),
∥∥∥BTφ

∥∥∥
∞
≤ 1

Q: What if there is no solution to the new problem? Ans:
Look at primal and prove the original problem has no solution.

Computationally, we start with the dual LP and end with a
dual LP. Result: Any α-approximate dual solver can be
boosted to (1+ ε)-approximate dual solver. Runtime:
poly(α, ε−1, log n) query calls.
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1 Introduction

2 Main Aspects of the Solution
Idea 1: Transshipment generalizes shortest path
Notation: Consider the LP primal-dual formulation
Idea 2: Transshipment boosting with duals
Idea 3: Multiplicative weights
Idea 4: Self-reduction of transshipment and consequences

3 Conclusion

Thank you!
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