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Original motivation

(SSSP).

We want to solve the single-source shortest path problem

@ Given an undirected graph where edges have weights.
Compute shortest path from source to all other nodes.
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Original motivation

We want to solve the single-source shortest path problem
(SSSP).

@ Given an undirected graph where edges have weights.
Compute shortest path from source to all other nodes.

e

One of the oldest problems in computer science.

Sequential setting .. easy! Dijkstra’s famous O(m + n)-time
algorithm is optimal (modulo log).

What about parallel or distributed settings? The problem seems

much harder: Dijkstra fails miserably. O «Fr «zr az
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In these settings, significant progress has been made on the
(1 + e)-approximate shortest path problem.

Main ideas:
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In these settings, significant progress has been made on the
(1 + e)-approximate shortest path problem.

Main ideas:

@ Hopset: Add a small number of edges to a graph such that
original shortest paths are (1 + ¢)-approximated with new

paths with small number of hops. (Figure taken from
Cohen’00
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Shortest paths have size <9 Graph with hop set
Shortest paths have size <5
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In these settings, significant progress has been made on the
(1 + e)-approximate shortest path problem.

Main ideas:

e Continuous optimization: (Today) Generalize the shortest
path to transshipment. Find an bad approximate solution and
boost it to an (1 + €)-approximate.
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Recent wins of the continious-optimization approach

Recent results based on continuous
optimization.

Parallel. 5 5

(1+ ¢)-apx with O(1) depth and O(m)
work.

(1 + £)-apx deterministic with O(1) depth
and O(m) work.

Distributed.

[Li; 2020]
[ASZ; 2020]
[RGHZL; 2022]
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Recent wins of the continious-optimization approach

Recent results based on continuous
optimization.

Parallel. 5 5

(1+ ¢)-apx with O(1) depth and O(m)
work.

(1 + £)-apx deterministic with O(1) depth
and O(m) work.

Distributed.
(1 + €)-apx in OPT(G) - n°®) rounds.

[Li; 2020]
[ASZ; 2020]
[RGHZL; 2022]

[ZGYHS'22].
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© Main Aspects of the Solution

@ |dea 1: Transshipment generalizes shortest path
Notation: Consider the LP primal-dual formulation
Idea 2: Transshipment boosting with duals
Idea 3: Multiplicative weights

o
(]
(]
o Idea 4: Self-reduction of transshipment and consequences
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|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.
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|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.

Also known as: uncapacitated min-cost flow, earth mover's
distance, Wasserstein metric, optimal transport, transshipment.
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|dea 1: Transshipment generalizes shortest path

Transshipment. Given a graph G = (V, E) and a demand vector
d € RV satisfying >°, d(v) = 0. Find a flow of minimum cost that
satisfies the demands.

Also known as: uncapacitated min-cost flow, earth mover’s
distance, Wasserstein metric, optimal transport, transshipment.

Note. Generalizes (s — t) shortest path. (Also generalizes SSSP.)

+1
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Notation: Consider the LP primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Steps: (1) Orient edges arbitrarily. (2) For each arc, add column to B.

€1 €2 €3
"2 U3 w [ +1
va +1
U € es B= -1 ...
v +1 ...
€1 vs -1 -1
Us vy
Primal. Dual.
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Notation: Consider the LP primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Steps: (1) Orient edges arbitrarily. (2) For each arc, add column to B.

Vg vy

v
N €2 €3

Us vy

Primal.
‘minf If]l; : Bf = d\

fo = 0 if no flow along e

fo > 0 if flow in same direction as e
f. < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t

€1 €2 €3

v +1

v2 +1
B= v -1 ...

va +1 ...

vs -1 -1

Dual.

maxs (d, @) : HBTqﬁHOO <L

¢, = potential (height) of v
(BT¢)e = ¢ — ¢ is height difference
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Notation: Consider the LP primal-dual formulation

Write the graph G = (V, E) using the node-edge incidence matrix B.
Steps: (1) Orient edges arbitrarily. (2) For each arc, add column to B.

e e e
2 vs w [ +1
va +1
v
! ) €3 B=w 7}
va +1 ...
€1 v | -1 —1
Us vy

Primal. Dual.
‘minf If]l; : Bf = d\

maxg (d,¢):||BT¢|_ <1.
¢, = potential (height) of v
(BT¢)e = ¢ — ¢ is height difference
|BTo||.. <1 height diff must be small

fo = 0 if no flow along e
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va +1
U1 ) €3 B=w -1 ...
v +1 ...
€1 vs -1 -1
Us vy
Primal. Dual.

‘minf £l : Bf:d\

maxs (d, @) : HBTqﬁHOO <L

¢, = potential (height) of v
(BT¢)e = ¢ — ¢ is height difference

|BT¢||.. <1 height diff must be small
SP .. ¢} = distance of v from source

fo = 0 if no flow along e

fo > 0 if flow in same direction as e
f. < 0 if flow in opposite direction
(Bf), = 0 if flow conserved at v

SP .. f* = shortest path from s to t
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© Main Aspects of the Solution

@ Idea 2: Transshipment boosting with duals
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|dea 2: Transshipment boosting with duals

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.
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Amazing property: we can boost a bad approximation to a good
approximation.

Primal. Dual.
ming |[|f]]; : Bf =d maxy (d,¢) : HBT¢HOO <1

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])

Fix G. Suppose we are given an oracle Og(-) which, given a
demand d, outputs an a-approximate feasible dual Og(d). There is
an algorithm that produces a (1 + €)-approximate feasible dual by
calling Og(-) at most poly(c,e™2, log n) times.
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|dea 2: Transshipment boosting with duals

Why transshipment? Isn’t it harder?

Amazing property: we can boost a bad approximation to a good
approximation.

Primal. Dual.
ming |[|f]]; : Bf =d maxy (d,¢) : HBT¢HOO <1

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])

Fix G. Suppose we are given an oracle Og(-) which, given a
demand d, outputs an a-approximate feasible dual Og(d). There is
an algorithm that produces a (1 + €)-approximate feasible dual by
calling Og(-) at most poly(c,e™2, log n) times.

Corollary

Given such a (dual) n°®)-approximation oracle, we can solve
(1+ ﬁ)—approximate transshipment in n°) oracle calls.
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ldea 3: Multiplicative weights

Feasibility task

36 ||Adl|ee + (b,¢) <

Oracle: linearized task

Given p, [|p|[; < 1:

Find ¢ such that

(p,Ad) + (b,¢) < v —¢
equiv: (ATp+b,¢) < y—e

query(p)
Multiplicative
‘Weights
maintain sol. ¢y, @a, ... \/

update

Question: How many oracle calls?
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ldea 3: Multiplicative weights

Feasibility task

36 [|Adll + (b.4) <

query(p)

Multiplicative
‘Weights

maintain sol. @1, da, ...

L T

Oracle: linearized task

Given p, ||p|l; < 1:
Find ¢ such that
(p, Ad) + (b,¢) < v —

£
equiv: (ATp+b,¢) <y—¢

A

update

Question: How many oracle calls?
The oracle will be queried poly(¢~1, log n, p) times.
Here, p > ||A¢||, called width of the oracle.
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Dual:

maxgs (d,¢) such that HBTQSHOO <1

40> «F»r « =)

« =

Do
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|dea 4: Self-reduction of transshipment and consequences

Dual: maxg (d,¢) such that HBTQSH <1

Binary search g: d¢p, (d,¢) > g, HBT¢H <1
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Dual: maxg (d,¢) such that HBTqﬁH <1

Binary search g: 3¢,

—~

d.0)zg |87 <1
Rewrite: d¢, (d,¢) >1=> “BT¢“m

Eliminate middle: d¢, (d,¢) > “BT¢“m

Multiplicative weights: Jo,

1
g
1
g
1
g
. 1
Rewrite: d¢, <d — Bp, ¢> >

dresidual

Oracle: 3¢, (dresidual; @) > €. Note: oracle width p > HBTQSHOO

Equiv: 3¢, (dresiduals @) > ¢/p,  ||BTo|| <1
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Oracle: 3¢, (dresidual, @) > €/p,
Notes:

1879]l, <1

o Q: Why does this make progress at all?

«40>» «Fr» « =)>»

« =

Do
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Self-reduction consequences

Oracle: 36, (dresisuars @) = </p. [[BT¢||, <1

Notes:

@ Q: Why does this make progress at all? Ans: Note that we can
increase p, the final answer is still (1 4 ¢)-approximate but
runtime increases.
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Self-reduction consequences

Oracle: 36, (dresisuars @) = </p. [[BT¢||, <1

Notes:

@ Q: Why does this make progress at all? Ans: Note that we can
increase p, the final answer is still (1 4 ¢)-approximate but
runtime increases. Also: we can now handle approximations in
the answer. An a-approx changes the width of the oracle.
’Approximation — runtime.‘

30, (desituat @) 2 /(a-p), ||BTo| <1

@ Q: What if there is no solution to the new problem?  Ans:
Look at primal and prove the original problem has no solution.

e Computationally, we start with the dual LP and end with a
dual LP. Result: Any a-approximate dual solver can be
boosted to (1 + €)-approximate dual solver. Runtime:
poly(a, e71, log n) query calls.
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@ Introduction

© Main Aspects of the Solution
@ Idea 1: Transshipment generalizes shortest path
@ Notation: Consider the LP primal-dual formulation
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@ Idea 3: Multiplicative weights
@ Idea 4: Self-reduction of transshipment and consequences

© Conclusion

Thank youl
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