Universally-Optimal $(1+\varepsilon)$-Approximate Shortest Path and Transshipment in the Distributed Setting

Goran Zuzic

ETH Zurich

21 Oct 2021

We want to solve the single-source shortest path problem (SSSP).

- Given a n-vertex undirected graph where edges have weights in the set $\left\{1,2, \ldots, n^{O(1)}\right\}$. Compute shortest path from source to all other nodes.

We want to solve the single-source shortest path problem (SSSP).

- Given a n-vertex undirected graph where edges have weights in the set $\left\{1,2, \ldots, n^{O(1)}\right\}$. Compute shortest path from source to all other nodes.

We want to solve the single-source shortest path problem (SSSP).

- Given a n-vertex undirected graph where edges have weights in the set $\left\{1,2, \ldots, n^{O(1)}\right\}$. Compute shortest path from source to all other nodes.

Old and important!
Sequential setting .. easy! Dijkstra!

We want to solve the single-source shortest path problem (SSSP).

- Given a n-vertex undirected graph where edges have weights in the set $\left\{1,2, \ldots, n^{O(1)}\right\}$. Compute shortest path from source to all other nodes.

Old and important!
Sequential setting .. easy! Dijkstra!
What about parallel or distributed settings? Much harder!

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G" or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

Figure: Network G.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

- Communication in synchronous rounds. Local computation inbetween.

Figure: Network G.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G " (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

- Communication in synchronous rounds. Local computation inbetween.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.

Figure: Network G.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

- Communication in synchronous rounds. Local computation inbetween.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.
- Initially: nodes know only their neighbors' IDs and incident weights.

Figure: Network G.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

- Communication in synchronous rounds. Local computation inbetween.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.
- Initially: nodes know only their neighbors' IDs and incident weights.
- Objective: minimize \# rounds.

Figure: Network G.

What is the distributed setting?

- Undirected graph $G=(V, E)$ with $|V|=n$ nodes and hop-diameter D. "Network G " or "Network topology G" (read: undirected graph).
- Communication: over G.
- Problem-specific input: A set of weights (SSSP inputs) w and a source $s \in V$.

Communication model: CONGEST [Peleg; 2000]

Figure: Network G.

- Communication in synchronous rounds. Local computation inbetween.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.
- Initially: nodes know only their neighbors' IDs and incident weights.
- Objective: minimize \# rounds.
- Note: D does not depend on the weights.

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{o(1)}$-competitive with the fastest possible SSSP algorithm on G.

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{o(1)}$-competitive with the fastest possible SSSP algorithm on G.

Related work.

[Li; 2020]
[ASZ; 2020]
Distributed.

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{o(1)}$-competitive with the fastest possible SSSP algorithm on G.

Related work.

[Li; 2020]
[ASZ; 2020]
Distributed.
$(1+\varepsilon)$-apx in $\tilde{O}(\sqrt{n}+D)$ rounds.
[BFKL; 2016]

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{\circ(1)}$-competitive with the fastest possible SSSP algorithm on G.

Related work.

Parallel.
$\overline{(1+\varepsilon)}$-apx with $\tilde{O}(1)$ depth and $\tilde{O}(m)$ work.
[Li; 2020]
[ASZ; 2020]
Distributed.
$(1+\varepsilon)$-apx in $\tilde{O}(\sqrt{n}+D)$ rounds.
$n^{o(1)}$-apx in $O P T(G) \cdot n^{o(1)}$ rounds.
[BFKL; 2016]
[Haeupler, Li; 2018]

What is OPT (G) ?
Def: Any correct SSSP algorithm on G requires $\geq O P T(G)$ rounds.

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{o(1)}$-competitive with the fastest possible SSSP algorithm on G.

Related work.

Parallel.
$\overline{(1+\varepsilon)}$-apx with $\tilde{O}(1)$ depth and $\tilde{O}(m)$ work.
[Li; 2020]
[ASZ; 2020]
Distributed.
$(1+\varepsilon)$-apx in $\tilde{O}(\sqrt{n}+D)$ rounds.
$n^{o(1)}$-apx in $O P T(G) \cdot n^{o(1)}$ rounds.
$(1+\varepsilon)$-apx in OPT $(G) \cdot n^{o(1)}$ rounds.
[BFKL; 2016]
[Haeupler, Li; 2018]
This talk.

What is OPT (G) ?
Def: Any correct SSSP algorithm on G requires $\geq O P T(G)$ rounds.

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{o(1)}$-competitive with the fastest possible SSSP algorithm on G.

Related work.

Parallel.
$\overline{(1+\varepsilon)}$-apx with $\tilde{O}(1)$ depth and $\tilde{O}(m)$ work.
[Li; 2020]
[ASZ; 2020]
Distributed.
$(1+\varepsilon)$-apx in $\tilde{O}(\sqrt{n}+D)$ rounds.
$n^{o(1)}$-apx in $O P T(G) \cdot n^{o(1)}$ rounds.
$(1+\varepsilon)$-apx in $\operatorname{OPT}(G) \cdot n^{o(1)}$ rounds.
[BFKL; 2016]
[Haeupler, Li; 2018]
This talk.

What is $O P T(G)$?
Def: Any correct SSSP algorithm on G requires $\geq O P T(G)$ rounds. Any $\left(O P T(G) \cdot n^{\circ(1)}\right)$-round algo is called (almost) universally optimal.

Main result: We design a distributed $(1+\varepsilon)$-SSSP algorithm, when run on a network G, is $n^{o(1)}$-competitive with the fastest possible SSSP algorithm on G.

Related work.

Parallel.
$\overline{(1+\varepsilon)}$-apx with $\tilde{O}(1)$ depth and $\tilde{O}(m)$ work.
[Li; 2020]
[ASZ; 2020]
Distributed.
$(1+\varepsilon)$-apx in $\tilde{O}(\sqrt{n}+D)$ rounds.
$n^{o(1)}$-apx in $O P T(G) \cdot n^{o(1)}$ rounds.
$(1+\varepsilon)$-apx in $\operatorname{OPT}(G) \cdot n^{o(1)}$ rounds.
[BFKL; 2016]
[Haeupler, Li; 2018]
This talk.

What is $O P T(G)$?
Def: Any correct SSSP algorithm on G requires $\geq O P T(G)$ rounds. Any $\left(O P T(G) \cdot n^{\circ(1)}\right)$-round algo is called (almost) universally optimal. Thm: $\operatorname{OPT}(G)=_{\tilde{\Theta}(1)}$ ShortcutQuality (G) [Haeupler, Wajc, Zuzic; 2021]

(1) Introduction

(2) Main Ideas

- Idea 1: Transshipment generalizes shortest path (prior work)
- Idea 2: Transshipment boosting (prior work)
- Idea 3: Approximately Solving Transshipment (main contrib)
- Idea 4: Distributed Implementation (contribution)
(3) Conclusion

Idea 1: Transshipment generalizes shortest path (prior work)
Transshipment.

Idea 1: Transshipment generalizes shortest path (prior work)

Transshipment. Given a graph $G=(V, E)$ and a demand vector $d \in \mathbb{R}^{V}$ satisfying $\sum_{V} d(v)=0$. Find a flow of minimum cost that satisfies the demands.

Transshipment. Given a graph $G=(V, E)$ and a demand vector $d \in \mathbb{R}^{V}$ satisfying $\sum_{v} d(v)=0$. Find a flow of minimum cost that satisfies the demands.

Idea 1: Transshipment generalizes shortest path (prior work)
Transshipment. Given a graph $G=(V, E)$ and a demand vector $d \in \mathbb{R}^{V}$ satisfying $\sum_{v} d(v)=0$. Find a flow of minimum cost that satisfies the demands.

Transshipment. Given a graph $G=(V, E)$ and a demand vector $d \in \mathbb{R}^{V}$ satisfying $\sum_{v} d(v)=0$. Find a flow of minimum cost that satisfies the demands.

Also known as: uncapacitated min-cost flow, Wasserstein metric, optimal transport, transshipment.

Transshipment. Given a graph $G=(V, E)$ and a demand vector $d \in \mathbb{R}^{V}$ satisfying $\sum_{V} d(v)=0$. Find a flow of minimum cost that satisfies the demands.

Also known as: uncapacitated min-cost flow, Wasserstein metric, optimal transport, transshipment.

Note. Generalizes $(s-t)$ shortest path. (Also generalizes SSSP.)

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Primal.

Dual.

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B.
Note: we orient edges arbitrarily.

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Primal.

Dual.

$$
\min _{f}\|f\|_{1}: B f=d
$$

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Primal.

Dual.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Primal.

Dual.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction
$(B f)_{v}=0$ if flow conserved at v

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Primal.

Dual.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction
$(B f)_{v}=0$ if flow conserved at v
SP .. $f^{*}=$ shortest path from s to t

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

Primal.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction
$(B f)_{v}=0$ if flow conserved at v
SP .. $f^{*}=$ shortest path from s to t

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Dual.

$$
\max _{\phi}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1
$$

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

Primal.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e

Dual.

$$
\begin{aligned}
& \max _{\phi}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1 . \\
& \phi_{v}=\text { potential (height) of } v
\end{aligned}
$$

$f_{e}<0$ if flow in opposite direction
$(B f)_{v}=0$ if flow conserved at v
SP .. $f^{*}=$ shortest path from s to t

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

Primal.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction
$(B f)_{v}=0$ if flow conserved at v
SP .. $f^{*}=$ shortest path from s to t

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Dual.

$$
\max _{\phi}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1
$$

$\phi_{v}=$ potential (height) of v
$\left(B^{T} \phi\right)_{e}=\phi_{a}-\phi_{b}$ is height difference

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

Primal.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction $(B f)_{v}=0$ if flow conserved at v SP .. $f^{*}=$ shortest path from s to t

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Dual.

$$
\max _{\phi}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1 .
$$

$$
\phi_{v}=\text { potential (height) of } v
$$

$$
\left(B^{T} \phi\right)_{e}=\phi_{a}-\phi_{b} \text { is height difference }
$$

$$
\left\|B^{\top} \phi\right\|_{\infty} \leq 1 \text { height diff must be small }
$$

Transshipment: a primal-dual formulation

Write the graph $G=(V, E)$ using the node-edge incidence matrix B. Note: we orient edges arbitrarily.

Primal.

$\min _{f}\|f\|_{1}: B f=d$
$f_{e}=0$ if no flow along e
$f_{e}>0$ if flow in same direction as e
$f_{e}<0$ if flow in opposite direction $(B f)_{v}=0$ if flow conserved at v SP .. $f^{*}=$ shortest path from s to t

$$
B=\begin{gathered}
\\
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{gathered}\left[\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & \ldots \\
+1 & & & \ldots \\
& +1 & & \ldots \\
& & -1 & \ldots \\
-1 & -1 & & \ldots
\end{array}\right]
$$

Dual.

$$
\max _{\phi}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1
$$

$\phi_{v}=$ potential (height) of v $\left(B^{T} \phi\right)_{e}=\phi_{a}-\phi_{b}$ is height difference $\left\|B^{\top} \phi\right\|_{\infty} \leq 1$ height diff must be small SP .. $\phi_{v}^{*}=$ distance of v from source

（1）Introduction

（2）Main Ideas
－Idea 1：Transshipment generalizes shortest path（prior work）
－Idea 2：Transshipment boosting（prior work）
－Idea 3：Approximately Solving Transshipment（main contrib）
－Idea 4：Distributed Implementation（contribution）
（3）Conclusion

Idea 2: Transshipment boosting (prior work)

Why transshipment? Isn't it harder?
Amazing property: we can boost a bad approximation to a good approximation.

Idea 2: Transshipment boosting (prior work)

Why transshipment? Isn't it harder?
Amazing property: we can boost a bad approximation to a good approximation.

Dual.
$\overline{\max _{\phi}}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1$.

Idea 2: Transshipment boosting (prior work)

Why transshipment? Isn't it harder?
Amazing property: we can boost a bad approximation to a good approximation.

$$
\frac{\text { Primal. }}{\min _{f}\|f\|_{1}}: B f=d
$$

Dual.

$\overline{\max _{\phi}}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1$.

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])
Fix G. Suppose we are given an oracle $O_{G}(\cdot)$ which, given a demand d, outputs an α-approximate feasible dual $O_{G}(d)$. There is an algorithm that produces a $(1+\varepsilon)$-approximate feasible dual by calling $O_{G}(\cdot)$ at most poly $\left(\alpha, \varepsilon^{-1}, \log n\right)$ times.

Idea 2: Transshipment boosting (prior work)

Why transshipment? Isn't it harder?
Amazing property: we can boost a bad approximation to a good approximation.

Primal.

$\overline{\min _{f}\|f\|_{1}: B f=d}$

Dual.
$\overline{\max _{\phi}}\langle d, \phi\rangle:\left\|B^{\top} \phi\right\|_{\infty} \leq 1$.

Theorem ([Sherman; 2013], [BFKL; 2016], [Zuzic; unpublished])
Fix G. Suppose we are given an oracle $O_{G}(\cdot)$ which, given a demand d, outputs an α-approximate feasible dual $O_{G}(d)$. There is an algorithm that produces a $(1+\varepsilon)$-approximate feasible dual by calling $O_{G}(\cdot)$ at most poly $\left(\alpha, \varepsilon^{-1}, \log n\right)$ times.

Corollary

Given such a (dual) $n^{o(1)}$-approximation oracle, we can solve $\left(1+\frac{1}{n^{\circ(1)}}\right)$-approximate transshipment in $n^{\circ(1)}$ oracle calls.

(1) Introduction

(2) Main Ideas

- Idea 1: Transshipment generalizes shortest path (prior work)
- Idea 2: Transshipment boosting (prior work)
- Idea 3: Approximately Solving Transshipment (main contrib)
- Idea 4: Distributed Implementation (contribution)
(3) Conclusion

Idea 3: Approximately Solving Transshipment (main contrib)

Goal: find an approximate dual solution
Prerequisite: Low-diameter decomposition (LDD).

Idea 3: Approximately Solving Transshipment (main contrib)

Goal: find an approximate dual solution

Prerequisite: Low-diameter decomposition (LDD).

Definition

For a graph G, a low-diameter decomposition (LDD) of radius ρ is a distribution over node partitions called clusters $V=S_{1} \sqcup \ldots \sqcup S_{k}$ along with centers $c_{1} \in S_{1}, \ldots, c_{k} \in S_{k}$ such that:
(1) For each i, the center c_{i} is within distance ρ of every other node in the induced subgraph $G\left[S_{i}\right]$, w.h.p.
(2) For all $x, y \in V$, the probability x, y are in different clusters is at most $2^{\sqrt{\log n}} \cdot \frac{\operatorname{dist}_{G}(u, v)}{\rho}$.

[Miller, Peng, Xu; 2013]

Idea 3: Approximately Solving Transshipment (main contrib)

Goal: find an approximate dual solution

Prerequisite: Low-diameter decomposition (LDD).

Definition

For a graph G, a low-diameter decomposition (LDD) of radius ρ is a distribution over node partitions called clusters $V=S_{1} \sqcup \ldots \sqcup S_{k}$ along with centers $c_{1} \in S_{1}, \ldots, c_{k} \in S_{k}$ such that:
(1) For each i, the center c_{i} is within distance ρ of every other node in the induced subgraph $G\left[S_{i}\right]$, w.h.p.
(2) For all $x, y \in V$, the probability x, y are in different clusters is at most $2^{\sqrt{\log n}} \cdot \frac{\operatorname{dist}_{6}(u, v)}{\rho}$.

Theorem (Prior work [Haeupler, Li; 2018])
LDDs can be sampled in OPT $(G) n^{\circ(1)}$ CONGEST rounds.

[Miller, Peng, Xu; 2013]

Idea 3: Approximately Solving Transshipment (main contrib)

Algorithm 0: Oblivious routing for TS.
(1) Let $\rho:=2^{(\log n)^{3 / 4}}$ (LDD radius).
(1) Sample an LDD with radius ρ.
(2) Each v sends its demend to the center of cluster containing v.

Idea 3: Approximately Solving Transshipment (main contrib)

Algorithm 0: Oblivious routing for TS.
(1) Let $\rho:=2^{(\log n)^{3 / 4}}$ (LDD radius).
(1) Sample an LDD with radius ρ.
(2) Each v sends its demend to the center of cluster containing v.

Idea 3: Approximately Solving Transshipment (main contrib)

Algorithm 0: Oblivious routing for TS.

(1) Let $\rho:=2^{(\log n)^{3 / 4}}$ (LDD radius).
(1) For $j=1,2, \ldots, g:=2^{(\log n)^{3 / 4}}$.
(1) Sample an LDD with radius ρ.
(3) Each v sends $\frac{1}{g}$-fraction of its demend to the center of cluster containing v.
(2) Update the demand to reflect the transport.

Idea 3: Approximately Solving Transshipment (main contrib)

Algorithm 0: Oblivious routing for TS.

(1) Let $\rho:=2^{(\log n)^{3 / 4}}$ (LDD radius).
(1) For $j=1,2, \ldots, g:=2^{(\log n)^{3 / 4}}$.
(1) Sample an LDD with radius ρ.
(2) Each v sends $\frac{1}{g}$-fraction of its demend to the center of cluster containing v.
(2) Update the demand to reflect the transport.

Idea 3: Approximately Solving Transshipment (main contrib)

Algorithm 0: Oblivious routing for TS.

(1) Let $\rho:=2^{(\log n)^{3 / 4}}$ (LDD radius).
(2) For $i=1,2, \ldots,(\log n)^{1 / 4}$ repeat the following:
(1) For $j=1,2, \ldots, g:=2^{(\log n)^{3 / 4}}$.
(1) Sample an LDD with radius ρ^{i}.
(2) Each v sends $\frac{1}{g}$-fraction of its demend to the center of cluster containing v.
(2) Update the demand to reflect the transport.
(3) Route all remaining demand to a common node along any spanning tree.

When $i=(\log n)^{1 / 4}$, radius is $\rho^{i}=\operatorname{poly}(n)$ and LDD has a single cluster.

Analysis intuition.

Question: how does OPT change between steps?
Fix u, v at distance ℓ. Suppose at some step
$d(u)=+1, d(v)=-1, d($ all else $)=0$. Clearly, $\mathrm{OPT}_{\text {before }}=\ell$. Suppose we sampled an LDD of radius ρ. How does OPT change?

Analysis intuition.

Question: how does OPT change between steps?
Fix u, v at distance ℓ. Suppose at some step
$d(u)=+1, d(v)=-1, d($ all else $)=0$. Clearly, $\mathrm{OPT}_{\text {before }}=\ell$. Suppose we sampled an LDD of radius ρ. How does OPT change?

- If u, v in same cluster, we are happy (the demand cancels out).

Analysis intuition.

Question: how does OPT change between steps?
Fix u, v at distance ℓ. Suppose at some step
$d(u)=+1, d(v)=-1, d($ all else $)=0$. Clearly, $\mathrm{OPT}_{\text {before }}=\ell$.
Suppose we sampled an LDD of radius ρ. How does OPT change?

- If u, v in same cluster, we are happy (the demand cancels out).
- If u, v in different clusters, they are now at distance $\rho+\ell+\rho$ apart.
- When $\ell \gg \rho$, this is still $O(\ell)$.

Analysis intuition.

Question: how does OPT change between steps?
Fix u, v at distance ℓ. Suppose at some step
$d(u)=+1, d(v)=-1, d($ all else $)=0$. Clearly, $\mathrm{OPT}_{\text {before }}=\ell$. Suppose we sampled an LDD of radius ρ. How does OPT change?

- If u, v in same cluster, we are happy (the demand cancels out).
- If u, v in different clusters, they are now at distance $\rho+\ell+\rho$ apart.
- When $\ell \gg \rho$, this is still $O(\ell)$.
- When $\rho \gg \ell$. Remember that separation happens with probability $2^{\sqrt{\log n}} \cdot \frac{\ell}{\rho}$. In expectation:

$$
2^{\sqrt{\log n}} \cdot \frac{\ell}{\rho} \cdot(2 \rho+\ell)=2^{\sqrt{\log n}} \cdot \frac{\ell}{\rho} \cdot O(\rho)=2^{\sqrt{\log n}} \cdot O(\ell)
$$

Analysis intuition.

Question: how does OPT change between steps?
Fix u, v at distance ℓ. Suppose at some step
$d(u)=+1, d(v)=-1, d$ (all else) $=0$. Clearly, $\mathrm{OPT}_{\text {before }}=\ell$. Suppose we sampled an LDD of radius ρ. How does OPT change?

- If u, v in same cluster, we are happy (the demand cancels out).
- If u, v in different clusters, they are now at distance $\rho+\ell+\rho$ apart.
- When $\ell \gg \rho$, this is still $O(\ell)$.
- When $\rho \gg \ell$. Remember that separation happens with probability $2^{\sqrt{\log n}} \cdot \frac{\ell}{\rho}$. In expectation:

$$
2^{\sqrt{\log n}} \cdot \frac{\ell}{\rho} \cdot(2 \rho+\ell)=2^{\sqrt{\log n}} \cdot \frac{\ell}{\rho} \cdot O(\rho)=2^{\sqrt{\log n}} \cdot O(\ell)
$$

In both cases, OPT increases by at most $2^{\sqrt{\log n}}$ factor. Hence after $(\log n)^{1 / 4}$ steps, it only increases by

$$
\left(2^{\sqrt{\log n}}\right)^{(\log n)^{1 / 4}}=2^{(\log n)^{3 / 4}}=n^{o(1)}
$$

Issue: On last slide, we proved the new OPT grows slowly .. BUT only looked at a fixed "pair" demand.

Claim

After repeating LDD sampling $2^{(\log n)^{3 / 4}}$ times, we get concentration and it holds for all demands.

Issue: On last slide, we proved the new OPT grows slowly .. BUT only looked at a fixed "pair" demand.

Claim

After repeating LDD sampling $2^{(\log n)^{3 / 4}}$ times, we get concentration and it holds for all demands.

(1) Introduction

(2) Main Ideas

- Idea 1: Transshipment generalizes shortest path (prior work)
- Idea 2: Transshipment boosting (prior work)
- Idea 3: Approximately Solving Transshipment (main contrib)
- Idea 4: Distributed Implementation (contribution)
(3) Conclusion

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:
(1) Each node chooses a private $\tilde{O}(1)$-bit value x_{v}.

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:
(1) Each node chooses a private $\tilde{O}(1)$-bit value x_{v}.
(2) We contract a subset of edges.

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:
(1) Each node chooses a private $\tilde{O}(1)$-bit value x_{v}.
(2) We contract a subset of edges.
(3) For each supernode $S \subseteq V$, define $x_{S}:=\bigoplus_{x \in S} x_{v}$.

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:
(1) Each node chooses a private $\tilde{O}(1)$-bit value x_{v}.
(2) We contract a subset of edges.
(3) For each supernode $S \subseteq V$, define $x_{S}:=\bigoplus_{x \in S} x_{v}$.
(9) (Each node in) each supernode receives an aggregate of adjacent supernodes' values.

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:
(1) Each node chooses a private $\tilde{O}(1)$-bit value x_{v}.
(2) We contract a subset of edges.
(3) For each supernode $S \subseteq V$, define $x_{S}:=\bigoplus_{x \in S} x_{v}$.
(9) (Each node in) each supernode receives an aggregate of adjacent supernodes' values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in OPT $(G) \cdot n^{o(1)}$ CONGEST rounds.

Idea 4: Distributed Implementation (contribution)

Designing distributed algorithms in CONGEST is hard. We propose a new model.

Distributed Minor-Aggregation model. In each round:
(1) Each node chooses a private $\tilde{O}(1)$-bit value x_{v}.
(2) We contract a subset of edges.
(3) For each supernode $S \subseteq V$, define $x_{S}:=\bigoplus_{x \in S} x_{v}$.
(9) (Each node in) each supernode receives an aggregate of adjacent supernodes' values.

Theorem (Many prior and concurrent papers)

A Minor-Aggregation round can be simulated in $\operatorname{OPT}(G) \cdot n^{o(1)}$ CONGEST rounds.

Corollary

Transshipment can be solved in $n^{o(1)}$ Minor-Aggregation rounds. Hence it can be implemented in OPT $(G) \cdot n^{\circ(1)}$ CONGEST rounds.

Conclusion

Idea 1: Don't solve SSSP. Solve transshipment.

Conclusion

Idea 1: Don't solve SSSP. Solve transshipment.
Idea 2: Transshipment can be boosted, hence we only need to compute a $n^{\circ(1)}$-approximation.

Conclusion

Idea 1: Don't solve SSSP. Solve transshipment.
Idea 2: Transshipment can be boosted, hence we only need to compute a $n^{o(1)}$-approximation.

Idea 3: Algo: Find LDD, send to center, repeat many times, increase LDD radius until we consume the entire graph.

Conclusion

Idea 1: Don't solve SSSP. Solve transshipment.
Idea 2: Transshipment can be boosted, hence we only need to compute a $n^{o(1)}$-approximation.

Idea 3: Algo: Find LDD, send to center, repeat many times, increase LDD radius until we consume the entire graph.

Idea 4: Implement in distributed setting using minor-aggregations. Convert to a universally-optimal CONGEST algorithm.

Conclusion

Idea 1: Don't solve SSSP. Solve transshipment.
Idea 2: Transshipment can be boosted, hence we only need to compute a $n^{o(1)}$-approximation.

Idea 3: Algo: Find LDD, send to center, repeat many times, increase LDD radius until we consume the entire graph.

Idea 4: Implement in distributed setting using minor-aggregations. Convert to a universally-optimal CONGEST algorithm.
Future directions: (1) lose polylog factors instead of $n^{\circ(1)}$, (2) make deterministic.

Conclusion

Idea 1: Don't solve SSSP. Solve transshipment.
Idea 2: Transshipment can be boosted, hence we only need to compute a $n^{o(1)}$-approximation.

Idea 3: Algo: Find LDD, send to center, repeat many times, increase LDD radius until we consume the entire graph.

Idea 4: Implement in distributed setting using minor-aggregations. Convert to a universally-optimal CONGEST algorithm.
Future directions: (1) lose polylog factors instead of $n^{\circ(1)}$, (2) make deterministic.

Thank you!

