Parallel Breadth-First Search and Exact Shortest Paths and Stronger Notions for Approximate Distances

Goran Zuzic

ETH Zürich \rightarrow Google Research

Václav Rozhoň

Bernhard Haeupler

Anders
Martinsson

Christoph Grunau

Today's Topic: The Shortest Path Problem.

- Undirected graph with non-negative weights $w(e)$.
- Single source.

Today's Topic: The Shortest Path Problem.

- Undirected graph with non-negative weights $w(e)$.
- Single source.

$$
\operatorname{dist}(A)=0 \quad \operatorname{dist}(B)=5
$$

$\operatorname{dist}(C)=15$
$\operatorname{dist}(D)=25$

Today's Topic: The Shortest Path Problem.

- Undirected graph with non-negative weights $w(e)$.
- Single source.

$$
\operatorname{dist}(A)=0 \quad \operatorname{dist}(B)=5
$$

$\operatorname{dist}(C)=15$
$\operatorname{dist}(D)=25$

Definition

We assume some source A is clear from context. We define:

- Exact distances: $\operatorname{dist}(B)$. Sometimes $\operatorname{dist}(A, B)$.

Today's Topic: The Shortest Path Problem.

- Undirected graph with non-negative weights $w(e)$.
- Single source.

$$
\operatorname{dist}(A)=0 \quad \operatorname{dist}(B)=5
$$

$\operatorname{dist}(C)=15$
$\operatorname{dist}(D)=25$

Definition

We assume some source A is clear from context. We define:

- Exact distances: $\operatorname{dist}(B)$. Sometimes $\operatorname{dist}(A, B)$.
- Approximate distances: $\tilde{d}(B)$.

Approximate distances

Distance estimate $=$ any function $\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$.

Definition

A function $\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$ is a weak $(1+\varepsilon)$-approximation (with respect to some source $s \in V$) if:

$$
\forall v \in V \quad \operatorname{dist}(v) \leq \tilde{d}(v) \leq(1+\varepsilon) \operatorname{dist}(v)
$$

Approximate distances.

Distance estimate $=$ any function $\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$.

Definition

A function $\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$ is a weak $(1+\varepsilon)$-approximation (with respect to some source $s \in V$) if:

$$
\forall v \in V \quad \operatorname{dist}(v) \leq \tilde{d}(v) \leq(1+\varepsilon) \operatorname{dist}(v)
$$

Example: $G=$ a path graph (from left to right). Source $=$ leftmost node.

weak approximate distances

Shortest path (i.e., distance computation) is an important building block. For example:

- Maximum flows [Edmonds-Karp'72] [Dinitz'70],
- Embeddings (embedding a graph into L1 [Bourgain'85]),
- Clustering (doing low-diameter decompositions [MPX'13]),
- Etc.

Shortest path (i.e., distance computation) is an important building block. For example:

- Maximum flows [Edmonds-Karp'72] [Dinitz'70],
- Embeddings (embedding a graph into L1 [Bourgain'85]),
- Clustering (doing low-diameter decompositions [MPX'13]),
- Etc.

Warning!

But these algorithms typically assume exact distance computations. This is easy in the sequential model (e.g., Dijkstra = simple and near linear).

Shortest path (i.e., distance computation) is an important building block. For example:

- Maximum flows [Edmonds-Karp'72] [Dinitz'70],
- Embeddings (embedding a graph into L1 [Bourgain'85]),
- Clustering (doing low-diameter decompositions [MPX'13]),
- Etc.

Warning!

But these algorithms typically assume exact distance computations. This is easy in the sequential model (e.g., Dijkstra = simple and near linear).

But in other models (parallel, distributed, streaming, etc.) exact distances are notoriously hard to compute. Approximate distances are much easier. But the above applications typically fail with (weak) approximations.

Our Contributions

(1) Definitions: Introduce new stronger notions of distance approximations.
(1) Definitions: Introduce new stronger notions of distance approximations.
(2) Main Result: Find efficient algorithms to construct them from weak (usual) distance approximations.

Our Contributions

(1) Definitions: Introduce new stronger notions of distance approximations.
(2) Main Result: Find efficient algorithms to construct them from weak (usual) distance approximations.
(3) Consequence: Give the first $\widehat{O}(m)$-work sublinear-depth parallel exact SSSP algorithm.

- Not in this talk!
- Our result: $\widehat{O}(m)$ work and $\widehat{O}(\sqrt{n})$ depth.
- Same result achieved independently by [Cao, Fineman'23].

(1) Introduction

(2) New Stronger Notions of Distance Approximations.

- Stronger Notion: Smothness
- Stronger Notion: Tree-likeness
- Smoothness + Tree-likeness $=<3$
(3) Efficient Constructions: Lifting Weak Approximations to Smooth Ones

4 Conclusion

Stronger Notion: Smoothness

Definition

A function (called "distance estimate") $\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$ is a smooth $(1+\varepsilon)$-approximation (with respect to a source $s \in V$) if:

$$
\begin{array}{r}
\tilde{d}(s)=0 \text { and } \\
\forall u, v \in V \\
|\tilde{d}(u)-\tilde{d}(v)| \leq(1+\varepsilon) \operatorname{dist}(u, v)
\end{array}
$$

Definition

A function (called "distance estimate") $\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$ is a smooth $(1+\varepsilon$)-approximation (with respect to a source $s \in V$) if:

$$
\begin{array}{rr}
& \tilde{d}(s)=0 \text { and } \\
\forall u, v \in V & |\tilde{d}(u)-\tilde{d}(v)| \leq(1+\varepsilon) \operatorname{dist}(u, v) .
\end{array}
$$

Example: $G=$ a path graph (from left to right). Source $=$ leftmost node.

weak approximate distances

smooth approximate distances

Stronger Notion: Tree-likeness

Stronger Notion: Tree-likeness

Definition (Informal)

$\tilde{d}: V \rightarrow \mathbb{R}_{\geq 0}$ is tree-like if:

- $\tilde{d}(s)=0$, and
- every other node v has a neighbor u whose estimate \tilde{d} is smaller by at least $w(u, v)$.
(Check the full talk for formal details.)

Smoothness + Tree-likeness $=<3$

Smoothness + Tree-likeness $=<3$

Theorem

The following two are equivalent:

- \tilde{d} is a smooth and tree-like $(1+\varepsilon)$ approximation (from source s).

Smoothness + Tree-likeness $=<3$

Theorem

The following two are equivalent:

- \tilde{d} is a smooth and tree-like $(1+\varepsilon)$ approximation (from source s).
- Given weights $w: E \rightarrow \mathbb{R}_{\geq 0}$, there exists a perturbation $w^{\prime}(e) \in[w(e),(1+\varepsilon) w(e)]$ such that $\tilde{d}(v)=\operatorname{dist}_{w^{\prime}}($ source $=s, v)$.

(1) Introduction

(2) New Stronger Notions of Distance Approximations.
(3) Efficient Constructions: Lifting Weak Approximations to Smooth Ones

- Iterative Smoothing
- $(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$

4. Conclusion

Efficient Constructions: Lifting Weak Approximations to Smooth Ones

Theorem

Suppose we have an oracle that computes weak
($1+\varepsilon$)-approximate distances.
There is an efficient algorithm that calls the oracle $O(\log n)$ times, asks for weak $(1+\varepsilon / O(\log n))$-approximations on different graphs, and computes $(1+\varepsilon)$-approximate smooth distances.

- Same for tree-likeness.
- I will only the main ideas behind efficiently turning weak \rightarrow smooth.

Efficient Constructions: Lifting Weak Approximations to Smooth Ones

Goal: $\forall u, v \in V \quad|\tilde{d}(u)-\tilde{d}(v)| \leq(1+\varepsilon) \operatorname{dist}(u, v)$.

Definition

A function \tilde{d} is (α, δ)-smooth if:

$$
\forall u, v \in V \quad|\tilde{d}(u)-\tilde{d}(v)| \leq(\alpha) \operatorname{dist}(u, v)+\delta
$$

Efficient Constructions: Lifting Weak Approximations to Smooth Ones

Goal: $\forall u, v \in V \quad|\tilde{d}(u)-\tilde{d}(v)| \leq(1+\varepsilon) \operatorname{dist}(u, v)$.

Definition

A function \tilde{d} is (α, δ)-smooth if:

$$
\forall u, v \in V \quad|\tilde{d}(u)-\tilde{d}(v)| \leq(\alpha) \operatorname{dist}(u, v)+\delta
$$

I will present an efficient algorithm that will transform \tilde{d} from

$$
(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)
$$

Then we would be done! $\left(1, n^{100}\right) \rightarrow \ldots \rightarrow\left(1+\varepsilon, \frac{1}{n^{100}}\right)$.

$(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$

Algorithm Slow Partial Smoothing algorithm (n oracle calls)
1: Let G^{\prime} be the graph G with distances multiplied by $\left(1+\frac{\varepsilon}{2 \log n}\right) \alpha$.
2: $\tilde{d} \leftarrow \mathrm{O}\left(G\right.$, source $=s$, approx $\left.=1+\frac{\varepsilon}{\log n}\right)$
3: for each $u \in V(G)$ do
4: $\quad \tilde{d}_{u} \leftarrow \mathrm{O}\left(G^{\prime}\right.$, source $=u$, approx $\left.=\frac{\varepsilon}{10 \log n}\right)$
5: $\quad \tilde{d}_{u}(\cdot) \leftarrow \tilde{d}(u)+\tilde{d}_{u}(\cdot)$
6: return $\tilde{d}_{*}(\cdot)=\min _{u \in V(G)} \tilde{d}_{u}(\cdot)$

$(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$

Algorithm Slow Partial Smoothing algorithm (n oracle calls)
1: Let G^{\prime} be the graph G with distances multiplied by $\left(1+\frac{\varepsilon}{2 \log n}\right) \alpha$.
2: $\tilde{d} \leftarrow \mathrm{O}\left(G\right.$, source $=s$, approx $\left.=1+\frac{\varepsilon}{\log n}\right)$
3: for each $u \in V(G)$ do
4:

$$
\tilde{d}_{\sim} \leftarrow O\left(\underset{\sim}{G}, \text { source }=u, \text { approx }=\frac{\varepsilon}{10 \log n}\right)
$$

5: $\quad \tilde{d}_{u}(\cdot) \leftarrow \tilde{d}(u)+\tilde{d}_{u}(\cdot)$
6: return $\tilde{d}_{*}(\cdot)=\min _{u \in V(G)} \tilde{d}_{u}(\cdot)$

Intuition

When looking at nodes at most $\frac{\delta \log n}{\varepsilon}$ close to u, they are already $\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$-smooth.

$(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$

Algorithm Slow Partial Smoothing algorithm (n oracle calls)
1: Let G^{\prime} be the graph G with distances multiplied by $\left(1+\frac{\varepsilon}{2 \log n}\right) \alpha$.
2: $\tilde{d} \leftarrow \mathrm{O}\left(G\right.$, source $=s$, approx $\left.=1+\frac{\varepsilon}{\log n}\right)$
3: for each $u \in V(G)$ do
4:

$$
\tilde{d}_{\sim} \leftarrow O\left(\underset{\sim}{G}, \text { source }=u, \text { approx }=\frac{\varepsilon}{10 \log n}\right)
$$

5: $\quad \tilde{d}_{u}(\cdot) \leftarrow \tilde{d}(u)+\tilde{d}_{u}(\cdot)$
6: return $\tilde{d}_{*}(\cdot)=\min _{u \in V(G)} \tilde{d}_{u}(\cdot)$

Intuition

When looking at nodes at most $\frac{\delta \log n}{\varepsilon}$ close to u, they are already $\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$-smooth.

Intuition

When $\operatorname{dist}(u, v)>\frac{\delta \log n}{\varepsilon}$, then $\tilde{d}_{u}(v)>\tilde{d}(v)$.

$(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$

Q: How to reduce the number of oracle calls from n to $O(1)$?
A: (Carefully) carve out the graph into strips of width $\omega:=\frac{10 \delta \log n}{\varepsilon}$. Connect all nodes to the source. Call the oracle. (And fix certain kind of mistakes.)

(1) Introduction
(2) New Stronger Notions of Distance Approximations.

- Stronger Notion: Smothness
- Stronger Notion: Tree-likeness
- Smoothness + Tree-likeness $=<3$
(3) Efficient Constructions: Lifting Weak Approximations to Smooth Ones
- Iterative Smoothing
- $(\alpha, \delta) \rightarrow\left(\alpha \cdot\left(1+\frac{\varepsilon}{O(\log n)}\right), \delta / 2\right)$

4 Conclusion

Thank you!

