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Today’s Topic: The Shortest Path Problem.

Undirected graph with non-negative weights w(e).
Single source.
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Definition
We assume some source A is clear from context. We define:

Exact distances: dist(B). Sometimes dist(A,B).
Approximate distances: d̃(B).
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Approximate distances.
Distance estimate = any function d̃ : V → R≥0.

Definition

A function d̃ : V → R≥0 is a weak (1 + ε)-approximation (with
respect to some source s ∈ V ) if:

∀v ∈ V dist(v) ≤ d̃(v) ≤ (1 + ε)dist(v).

Example: G = a path graph (from left to right). Source =
leftmost node.

weak approximate distances

dist(u)

�d(u)
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Shortest path (i.e., distance computation) is an important building
block. For example:

Maximum flows [Edmonds-Karp’72] [Dinitz’70],

Embeddings (embedding a graph into L1 [Bourgain’85]),

Clustering (doing low-diameter decompositions [MPX’13]),

Etc.

Warning!
But these algorithms typically assume exact distance
computations. This is easy in the sequential model (e.g., Dijkstra
= simple and near linear).

But in other models (parallel, distributed, streaming, etc.) exact
distances are notoriously hard to compute. Approximate distances
are much easier. But the above applications typically fail with
(weak) approximations.
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Our Contributions

1 Definitions: Introduce new stronger notions of distance
approximations.

2 Main Result: Find efficient algorithms to construct them
from weak (usual) distance approximations.

3 Consequence: Give the first Ô(m)-work sublinear-depth
parallel exact SSSP algorithm.

Not in this talk!
Our result: Ô(m) work and Ô(

√
n) depth.

Same result achieved independently by [Cao, Fineman’23].
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parallel exact SSSP algorithm.

Not in this talk!
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1 Introduction

2 New Stronger Notions of Distance Approximations.
Stronger Notion: Smothness
Stronger Notion: Tree-likeness
Smoothness + Tree-likeness = <3

3 Efficient Constructions: Lifting Weak Approximations to Smooth
Ones

4 Conclusion
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Stronger Notion: Smoothness

Definition

A function (called “distance estimate”) d̃ : V → R≥0 is a smooth
(1 + ε)-approximation (with respect to a source s ∈ V ) if:

d̃(s) = 0 and

∀u, v ∈ V |d̃(u)− d̃(v)| ≤ (1 + ε)dist(u, v).

Example: G = a path graph (from left to right). Source =
leftmost node.

weak approximate distances

dist(u)

�d(u)

smooth approximate distances
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Stronger Notion: Tree-likeness

Definition (Informal)

d̃ : V → R≥0 is tree-like if:
d̃(s) = 0, and
every other node v has a neighbor u whose estimate d̃ is
smaller by at least w(u, v).

(Check the full talk for formal details.)
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Smoothness + Tree-likeness = <3

Theorem
The following two are equivalent:

d̃ is a smooth and tree-like (1+ ε) approximation (from source
s).

Given weights w : E → R≥0, there exists a perturbation
w ′(e) ∈ [w(e), (1 + ε)w(e)] such that
d̃(v) = distw ′(source = s, v).
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1 Introduction

2 New Stronger Notions of Distance Approximations.

3 Efficient Constructions: Lifting Weak Approximations to Smooth
Ones

Iterative Smoothing
(α, δ)→ (α · (1 + ε

O(log n)), δ/2)

4 Conclusion
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Efficient Constructions: Lifting Weak Approximations to
Smooth Ones

Theorem
Suppose we have an oracle that computes weak
(1 + ε)-approximate distances.
There is an efficient algorithm that calls the oracle O(log n) times,
asks for weak (1 + ε/O(log n))-approximations on different graphs,
and computes (1 + ε)-approximate smooth distances.

Same for tree-likeness.
I will only the main ideas behind efficiently turning weak →
smooth.
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Efficient Constructions: Lifting Weak Approximations to
Smooth Ones

Goal: ∀u, v ∈ V |d̃(u)− d̃(v)| ≤ (1 + ε)dist(u, v).

Definition

A function d̃ is (α, δ)-smooth if:

∀u, v ∈ V |d̃(u)− d̃(v)| ≤ (α)dist(u, v) + δ.

I will present an efficient algorithm that will transform d̃ from

(α, δ)→ (α · (1 +
ε

O(log n)
), δ/2).

Then we would be done! (1, n100)→ . . .→ (1 + ε, 1
n100 ).
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(α, δ)→ (α · (1 + ε
O(log n)), δ/2)

Algorithm Slow Partial Smoothing algorithm (n oracle calls)

1: Let G ′ be the graph G with distances multiplied by (1+ ε
2 log n )α.

2: d̃ ← O(G , source = s, approx = 1 + ε
log n )

3: for each u ∈ V (G ) do
4: d̃u ← O(G ′, source = u, approx = ε

10 log n )

5: d̃u(·)← d̃(u) + d̃u(·)
6: return d̃∗(·) = minu∈V (G) d̃u(·)

Intuition

When looking at nodes at most δ log n
ε close to u, they are already

(α · (1 + ε
O(log n)), δ/2)-smooth.

Intuition

When dist(u, v) > δ log n
ε , then d̃u(v) > d̃(v).
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(α, δ)→ (α · (1 + ε
O(log n)), δ/2)

Q: How to reduce the number of oracle calls from n to O(1)?
A: (Carefully) carve out the graph into strips of width
ω := 10δ log n

ε . Connect all nodes to the source. Call the oracle.
(And fix certain kind of mistakes.)

s

ω = 10δ(log n)/ε
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1 Introduction

2 New Stronger Notions of Distance Approximations.
Stronger Notion: Smothness
Stronger Notion: Tree-likeness
Smoothness + Tree-likeness = <3

3 Efficient Constructions: Lifting Weak Approximations to Smooth
Ones

Iterative Smoothing
(α, δ)→ (α · (1 + ε

O(log n)), δ/2)

4 Conclusion

Thank you!
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