

Introduction

Distributed optimization includes some of the most fundamental and well-studied problems in distributed computing like the distributed minimum spanning tree (MST). Advancing our theoretical understanding of distributed optimization has led to a long line of work spanning over four decades that culminated in algorithms that are *existentially optimal*, meaning that there exists some pathological worst-case topology on which no algorithm can do better.

Still, most networks of interest allow for exponentially faster algorithms. This motivates two questions:

- What network topology parameters determine the complexity of distributed optimization?
- Are there *universally-optimal* algorithms that are as fast as possible on *every* topology?

We resolve these 25-year-old open problems in the known-topology setting. Summary:

- The distributed runtime on any graph G is lower bounded (up to polylogs) by a combinatorial graph quantity called **shortcut quality** of G.
- Furthermore, at least in the known-topology setting, one can design algorithms that run time shortcut quality time, yielding **universally-optimal algorithms**.
- We apply the same technique on multiple problems, including MST, $(1 + \varepsilon)$ -min cut, various approximate shortest paths problems, sub-graph connectivity, etc.

CONGEST model

We work in the classic CONGEST model. The upper bounds require an additional known-topology assumption.

- Network topology is abstracted as an undirected graph.
- Nodes initially know only their neighborhood.
- Communication in synchronous rounds.
- Each round neighbors exchange $\tilde{O}(1)$ -bit messages.
- Computation is free.
- Objective: minimize # rounds.
- (Known topology) Originally, each node knows the entire network (but not the problem input!).

Figure 1. Your favorite large network G.

Preliminary: Shortcut quality [Ghaffar, Haeupler, 2015]

In a graph G = (V, E) we are given **connected node-disjoint** parts $\mathcal{P} = \{P_1, P_2, \ldots, P_k\}, P_i \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

- 1. (Shortcut edges) Each part P_i gets a set of edges $F_i \subseteq E$.
- 2. (Dilation) The diameter of $G[P_i] + G[F_i]$ is at most Q.
- 3. (Congestion) Each edge $e \in E$ is used by at most Q different F_i 's.

Universally-Optimal Distributed Algorithms for Known Topologies

Bernhard Haeupler¹, David Wajc², Goran Zuzic³

¹ETH Zürich, Carnegie Mellon University

²Stanford University ETH Zürich

Preliminary: algorithm design using shortcuts

Definition: ShortcutQuality(G) is the worst-case quality over all such \mathcal{P} .

Theorem [Ghaffari, Haeupler, 2015]: If any set of parts \mathcal{P} admits a shortcut of quality Q (i.e., ShortcutQuality(G) $\leq Q$), and this shortcut can be efficiently constructed, then MST, approximate mincut, approximate shortest path, etc. can be solved in $\tilde{O}(Q)$ CONGEST rounds.

Our results

Theorem (Lower bound): for any graph G, any correct distributed algorithm for MST, SSSP, mincut, etc., requires $\hat{\Omega}(\text{ShortcutQuality}G)$ rounds.

Theorem (Upper bound): for any graph G, shortcuts of near-optimal quality $\tilde{O}(\text{ShortcutQuality}(G))$ rounds in the known-topology setting. Therefore, MST (and other problems) can be solved in $\tilde{O}(\text{ShortcutQuality}(G))$ rounds.

Using a new type of an oblivious routing called "hop-constrained oblivious routing" [1].

Lower bound overview

- 1. We want to prove that $T_{MST}(G) \ge \text{ShortcutQuality}(G)$ where T_{MST} denotes the optimal time to solve MST on G.
- 2. Suppose $T_{MST} \leq Q$. Given parts \mathcal{P} , it is sufficient to construct shortcuts of quality $\tilde{O}(Q)$ on
- 3. One can prove that it is sufficient to consider only paths \mathcal{P} , and not arbitrary subsets of nodes.
- 4. It is sufficient to show that the "distributed disjointness task" can be solved on arbitrary node-disjoint paths \mathcal{P} in O(Q) rounds. This would guarantee shortcuts of quality O(Q) exist.
- 5. We find a "disjointness gadget" on a subset of the paths $\mathcal{P}' \subseteq \mathcal{P}$ of large size.
- 6. Using the disjointness gadget, we show that solving MST on \mathcal{P}' (which can be done in Q rounda via the oracle) solves the distributed disjointness task. Therefore, shortcuts of quality O(Q) exist.

Lower bound idea I

Definition: distributed disjointness task

- Alice and Bob have k bits $x \in \{0,1\}^k$ and $y \in \{0,1\}^k$ each.
- We are given k node-disjoint paths P_1, \ldots, P_k .
- Alice controls the heads of the paths $S = \{s_1, \ldots, s_k\}$; Bob controls the tails $T = \{t_1, \ldots, t_k\}$. • What is the minimum amount of rounds until we know whether $\exists i \in \{1, \ldots, k\}$ such that $x_i = 1 \text{ and } y_i = 1.$

Theorem: The distributed disjointness on each subset of paths $\{P_1, \ldots, P_k\}$ can be solved in at most Q rounds if and only if there exists shortcut of quality $\tilde{O}(Q)$ for P_1, \ldots, P_k .

This follows from a network coding gap result [2].

jointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{\operatorname{poly}(\log n)}|P|$.

• The proof is combinatorial and fairly involved.

Relating MST and the distributed disjointness task

Observation: Let F be a disjointness gadget on node-disjoint paths \mathcal{P} . Using the MST oracle one can solve the distributed disjointness problem.

- Suppose Alice and Bob have inputs x and y, respectively.
- head or tail).
- In path P_i , the edge incident to the head is assigned a cost of x_i .
- In path P_i , the edge incident to the tail is assigned a cost of y_i .

Conclusions and open questions

- MST, (approx) SSSP, (approx) mincut, connectivity verification, etc.
- universally optimal.
- New complexity class of inter-reducible problems in CONGEST.
- congestion + dilation.

Lower bound idea II

Definition: a disjointness gadget of a set of node-disjoint paths P_1, \ldots, P_k is a connected subset of edges F that touches the heads/tails of each path, but does not otherwise intersect the interior.

Figure 2. A disjointness gadget

Theorem (main technical contribution): Given any set of node-disjoint paths P, there exists a dis-

• Assign the MST cost of 0 to (1) edges in F, (2) edges internal to paths \mathcal{P} (not adjacent to the

• Easy to verify: there exists MST of cost 0 if and only if x and y are disjoint.

• Shortcut Quality of G is the graph parameter that characterizes distributed computing for

• We get algorithms that match this bound in the known topology setting, hence are

• On a high-level: we make progress on many questions concerning joint optimization of

References

In Proceedings of the 53rd Annual ACM Symposium on Theory of Computing (STOC). ACM, 2021.

^[1] Mohsen Ghaffari, Bernhard Haeupler, and Goran Zuzic. Hop-constrained oblivious routing.

^[2] Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion times of multiple unicasts. In Proceedings of the 61st Symposium on Foundations of Computer Science (FOCS), 2020.