Universally-Optimal Distributed Algorithms for Known Topologies

Speaker: Goran Zuzic

STOC 2021

Bernhard Haeupler CMU / ETH Zürich

David Wajc Stanford

Goran Zuzic ETH Zürich

Introduction

Setting: we are given some specific distributed network G.

Examples:

- Computers in a network.
- Processors in a supercomputer.
- Sensors in a field.

Introduction

Setting: we are given some specific distributed network G.

Examples:

- Computers in a network.
- Processors in a supercomputer.
- Sensors in a field.

Problem: solve an optimization problem on the network graph.

- MST (minimum spanning tree),
- SSSP (single-source shortest path),
- Mincut, etc.

Introduction

Setting: we are given some specific distributed network G.

Examples:

- Computers in a network.
- Processors in a supercomputer.
- Sensors in a field.

Problem: solve an optimization problem on the network graph.

- MST (minimum spanning tree),
- SSSP (single-source shortest path),
- Mincut, etc.

• The world is becoming more-and-more decentralized.

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.
- Practical perspective: spanning tree protocol.

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.
- Practical perspective: spanning tree protocol.

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.
- Practical perspective: spanning tree protocol.

Most prior work focuses only on pathological worst-case graphs G.

Our question: what is the optimal running time for non-worst-case networks G.

CONGEST model

Your favorite large network G.

Your favorite large network G.

CONGEST model

• Network topology is an undirected graph.

Your favorite large network G.

- Network topology is an undirected graph.
- Communication in synchronous rounds.

Your favorite large network G.

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange $\tilde{O}(1)$ -bit msgs.

Your favorite large network G.

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange Õ(1)-bit msgs.
- Computation is free.

Your favorite large network G.

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange Õ(1)-bit msgs.
- Computation is free.
- Initially, nodes know only their immediate neighborhood.

Your favorite large network G.

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange Õ(1)-bit msgs.
- Computation is free.
- Initially, nodes know only their immediate neighborhood.
- Objective: minimize # rounds.

Graph

rounds

	Graph	# rounds
[GHS 1983]	General graphs	$O(n \log n)$

	Graph	# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)

	Graph	<pre># rounds</pre>
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$

	Graph	# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(n^{0.613}+{}_D)$

	Graph	# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(\mathit{n}^{0.613}+{\scriptscriptstyle D})$
[KP 1998]	General graphs	$ ilde{O}(\sqrt{n}+ extsf{D})$

	Graph	# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(\mathit{n}^{0.613}+{\scriptscriptstyle D})$
[KP 1998]	General graphs	$ ilde{O}(\sqrt{n}+ ilde{ ho})$
[PR 2000]	Worst-case graph	$ ilde{\Omega}(\sqrt{n})$

	Graph	<pre># rounds</pre>
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(\mathit{n}^{0.613}+{\scriptscriptstyle D})$
[KP 1998]	General graphs	$ ilde{O}(\sqrt{n}+{\scriptscriptstyle D})$
[PR 2000]	Worst-case graph	$ ilde{\Omega}(\sqrt{n})$
[GH 2015]	Planar graphs	$\tilde{O}(D)$

	Graph	# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(n^{0.613}+{}_{D})$
[KP 1998]	General graphs	$ ilde{O}(\sqrt{n}+{\scriptscriptstyle D})$
[PR 2000]	Worst-case graph	$ ilde{\Omega}(\sqrt{n})$
[GH 2015]	Planar graphs	$\tilde{O}(D)$
[HI Z 2016a/b]	Genus-bounded, treewidth-bounded	$ ilde{O}(D)$

	Graph	<pre># rounds</pre>
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(n^{0.613}+{}_{D})$
[KP 1998]	General graphs	$ ilde{O}(\sqrt{n}+{\scriptscriptstyle D})$
[PR 2000]	Worst-case graph	$ ilde{\Omega}(\sqrt{n})$
[GH 2015]	Planar graphs	$ ilde{O}(D)$
[HI Z 2016a/b]	Genus-bounded, treewidth-bounded	$\tilde{O}(D)$
[HL Z 2018]	Minor-free	$ ilde{O}(D^2)$

	Graph	<pre># rounds</pre>
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	O(n)
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$ ilde{O}(n^{0.613}+{}_{D})$
[KP 1998]	General graphs	$ ilde{O}(\sqrt{n}+{\scriptscriptstyle D})$
[PR 2000]	Worst-case graph	$ ilde{\Omega}(\sqrt{n})$
[GH 2015]	Planar graphs	$ ilde{O}(D)$
[HI Z 2016a/b]	Genus-bounded, treewidth-bounded	$ ilde{O}(D)$
[HL Z 2018]	Minor-free	$ ilde{O}(D^2)$
[GH 2020]	Minor-free	$\tilde{O}(D)$

Shortcoming of the current state-of-the-art

Matching bounds only for worst-case G and special graph classes.

Shortcoming of the current state-of-the-art

Matching bounds only for worst-case G and special graph classes.

Open problems [Garay, Kutten, Peleg, 1993]

- What graph parameters characterize the complexity of distributed MST (and other problems)?
- Are there universally-optimal algorithms that are as fast as possible on every topology?

Shortcoming of the current state-of-the-art

Matching bounds only for worst-case G and special graph classes.

Open problems [Garay, Kutten, Peleg, 1993]

- What graph parameters characterize the complexity of distributed MST (and other problems)?
- Are there universally-optimal algorithms that are as fast as possible on every topology?

We answer both of these questions.

For every undirected graph *G* there is a graph parameter **ShortcutQuality**(*G*) [Ghaffari, Haeupler, 2015]. For every undirected graph G there is a graph parameter **ShortcutQuality**(G) [Ghaffari, Haeupler, 2015].

• Lower bound (impossibility view):

Theorem

Distributed MST requires at least $\tilde{\Omega}($ **ShortcutQuality**(G)) time.

For every undirected graph G there is a graph parameter **ShortcutQuality**(G) [Ghaffari, Haeupler, 2015].

• Lower bound (impossibility view):

Theorem

Distributed MST requires at least $\tilde{\Omega}($ **ShortcutQuality**(G)) time.

• Upper bound (algorithmic view):

Theorem

Distributed MST can be solved in $\tilde{O}($ **ShortcutQuality**(G)) time if the topology is known in advance (but not the input!).

Consequences 1/2

- New result: <u>universal optimality</u> = as fast as possible on every network.
 - Intuition: "perfectly adapts to the network!"
 - We achieve it in the known-topology setting!
Consequences 1/2

- New result: <u>universal optimality</u> = as fast as possible on every network.
 - Intuition: "perfectly adapts to the network!"
 - We achieve it in the known-topology setting!
- Old notion: "<u>existential optimality</u>" = optimal in a class of graphs.
 - Depends on the parameterization $(\tilde{O}(\sqrt{n} + D)$ is optimal only when parameterizing via n and D).
 - Universal optimality is optimal with respect to all parameterizations.

• Same method works for many other problems:

- (Approx) distributed SSSP.
- (Approx) distributed mincut.
- Distributed connectivity verification.
- Moreover, $\tilde{O}($ **ShortcutQuality**(G)) characterizes <u>all</u> of them.

- Same method works for many other problems:
 - (Approx) distributed SSSP.
 - (Approx) distributed mincut.
 - Distributed connectivity verification.
- Moreover, $\tilde{O}($ **ShortcutQuality**(G)) characterizes <u>all</u> of them.
- These problems inter-reduce to each other.

2 Preliminary: Shortcuts

- Shortcut definition
- Shortcut application: part-wise aggregation
- Shortcut application: MST
- 3 High-level technical overview
- 4 Lower bound: more details
- **5** Conclusion and Open Questions

Definition ([Ghaffari, Haeupler, 2015])

In a graph G = (V, E) we are given <u>connected node-disjoint</u> parts $\mathcal{P} = \{P_1, P_2, \dots, P_k\}, P_i \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

Definition ([Ghaffari, Haeupler, 2015])

In a graph G = (V, E) we are given connected node-disjoint parts $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$, $P_i \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

• (Shortcut edges) Each part P_i gets a set of edges $F_i \subseteq E$.

Definition ([Ghaffari, Haeupler, 2015])

In a graph G = (V, E) we are given connected node-disjoint parts $\mathcal{P} = \{P_1, P_2, \dots, P_k\}, P_i \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

- (Shortcut edges) Each part P_i gets a set of edges $F_i \subseteq E$.
- **2** (Dilation) The diameter of $G[P_i] + G[F_i]$ is at most Q.

Definition ([Ghaffari, Haeupler, 2015])

In a graph G = (V, E) we are given connected node-disjoint parts $\mathcal{P} = \{P_1, P_2, \dots, P_k\}, P_i \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

- (Shortcut edges) Each part P_i gets a set of edges $F_i \subseteq E$.
- **2** (Dilation) The diameter of $G[P_i] + G[F_i]$ is at most Q.
- (Congestion) Each edge $e \in E$ is used by at most Q different F_i 's.

Definition ([Ghaffari, Haeupler, 2015])

In a graph G = (V, E) we are given connected node-disjoint parts $\mathcal{P} = \{P_1, P_2, \dots, P_k\}, P_i \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

- (Shortcut edges) Each part P_i gets a set of edges $F_i \subseteq E$.
- **2** (Dilation) The diameter of $G[P_i] + G[F_i]$ is at most Q.
- (Congestion) Each edge $e \in E$ is used by at most Q different F_i 's.

Definition

$$\mathsf{ShortcutQuality}(\mathcal{G}) = \max_{\mathcal{P}} \min_{\substack{\mathsf{shortcut for } \mathcal{P}}} \operatorname{quality}(\mathcal{P})$$

Shortcut application: part-wise aggregation

Example (Part-wise aggregation [Ghaffari, Haeupler, 2015])

We are given <u>connected node-disjoint</u> parts $\{P_1, P_2, \ldots, P_k\}$. Each node v has a $O(\log n)$ -bit private input x_v . Each part needs to learn the minimum of the inputs in it.

Shortcut application: part-wise aggregation

Example (Part-wise aggregation [Ghaffari, Haeupler, 2015])

We are given <u>connected node-disjoint</u> parts $\{P_1, P_2, \ldots, P_k\}$. Each node v has a $O(\log n)$ -bit private input x_v . Each part needs to learn the minimum of the inputs in it.

Lemma ([Ghaffari, Haeupler, 2015])

Given a quality-Q shortcut on $\{P_1, \ldots, P_k\}$, we can solve the part-wise aggregation problem in $\tilde{O}(Q)$ rounds.

Hints on solving part-wise aggregation via quality-Q shortcuts:

- Assume each part P_i has a leader $v_i \in P_i$ (easy exercise).
- All parts concurrently build a BFS tree of $H_i := G[P_i] + G[F_i]$:
 - The leader v_i becomes "active" in a uniformly random time $\{0, \ldots, Q\}$.
 - When a node becomes active, it spreads a message along its neighbors in *H_i* (only once).
 - A node becomes active the first time it hears a message from part *i*.
 - Analysis: in every round at most $O(\log n)$ messages are scheduled to pass through an edge, with high probability. We send those messages by subdividing each round into $O(\log n)$ subrounds. Since the BFS tree has depth Q, the process completes in $O(Q \log n)$ subdivided rounds.
- Spread the maximum using the BFS tree using the same idea (randomly delay each part by $\{0, 1, \ldots, Q\}$ and flood-fill the tree).

Suppose that for each set of connected and node-disjoint parts $\{P_1, \ldots, P_k\}$ we can construct a shortcut of quality Q.

Suppose that for each set of connected and node-disjoint parts $\{P_1, \ldots, P_k\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Suppose that for each set of connected and node-disjoint parts $\{P_1, \ldots, P_k\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Proof. Run Boruvka's algorithm.

• Each node v finds the minimum outgoing edge.

Suppose that for each set of connected and node-disjoint parts $\{P_1, \ldots, P_k\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

- Each node v finds the minimum outgoing edge.
- Add that edge to the MST.

Suppose that for each set of connected and node-disjoint parts $\{P_1, \ldots, P_k\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

- Each node v finds the minimum outgoing edge.
- Add that edge to the MST.
- Contract that edge.

Suppose that for each set of connected and node-disjoint parts $\{P_1, \ldots, P_k\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

- Each node v finds the minimum outgoing edge.
- Add that edge to the MST.
- Contract that edge.
- Repeat $O(\log n)$ times.

2 Preliminary: Shortcuts

3 High-level technical overview

- Upper bound: shortcut construction
- Lower bound: distributed disjointness task
- Lower bound: ingredients
- 4 Lower bound: more details
- 5 Conclusion and Open Questions

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts? Answer: Yes! But currently only in the known topology setting.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?

Answer: Yes! But currently only in the known topology setting.

• Challenge 1: parts need to construct shortcuts without learning (much) about other parts.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
 - Challenge even in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
 - Challenge even in the known topology setting.
 - Solution: Oblivious routing!

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
 - Challenge even in the known topology setting.
 - Solution: Oblivious routing!
- <u>Challenge 2</u>: we need to balance between both diameter and congestion.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
 - Challenge even in the known topology setting.
 - Solution: Oblivious routing!
- <u>Challenge 2</u>: we need to balance between both diameter and congestion.
 - Standard solutions fail.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
 - Challenge even in the known topology setting.
 - Solution: Oblivious routing!
- <u>Challenge 2</u>: we need to balance between both diameter and congestion.
 - Standard solutions fail.
 - <u>Solution:</u> see the talk "Hop-Constrained Oblivious Routing" [GHZ STOC'21] on Youtube.

Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
 - Challenge even in the known topology setting.
 - Solution: Oblivious routing!
- <u>Challenge 2</u>: we need to balance between both diameter and congestion.
 - Standard solutions fail.
 - <u>Solution:</u> see the talk "Hop-Constrained Oblivious Routing" [GHZ STOC'21] on Youtube.

Theorem (Upper bound)

Suppose all nodes know the topology G upfront. We can construct shortcuts of near-optimal quality Q in $\tilde{O}(Q)$ rounds.

Distributed disjointness task

• Alice and Bob have k-bit inputs x and y, resp.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_1, \ldots, P_k .

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_1, \ldots, P_k .
- Alice controls the heads of the paths S = {s₁,..., s_k}; Bob controls the tails T = {t₁,..., t_k}.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_1, \ldots, P_k .
- Alice controls the heads of the paths $S = \{s_1, \ldots, s_k\}$; Bob controls the tails $T = \{t_1, \ldots, t_k\}$.
- What is the minimum amount of rounds until Alice/Bob decide whether ∃i ∈ {1,...,k} such that x_i = 1 and y_i = 1.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_1, \ldots, P_k .
- Alice controls the heads of the paths $S = \{s_1, \ldots, s_k\}$; Bob controls the tails $T = \{t_1, \ldots, t_k\}$.
- What is the minimum amount of rounds until Alice/Bob decide whether ∃i ∈ {1,...,k} such that x_i = 1 and y_i = 1.

Theorem

The distributed disjointness task on each subset of paths $\{P_1, \ldots, P_k\}$ can be solved in Q rounds.

if and only if

There exists shortcut of quality $\tilde{O}(Q)$ for P_1, \ldots, P_k .

 See "Network Coding Gaps for Completion Times of Multiple Unicasts" [HWZ FOCS'20] on Youtube.

We want to prove:

Theorem

$T_{MST}(G) \geq \tilde{\Omega}(1) \cdot \text{ShortcutQuality}(G).$

We want to prove:

- 2 Preliminary: Shortcuts
- 3 High-level technical overview

4 Lower bound: more details

- Lower bound: statement
- Disjointness gadget: definition
- Disjointness gadget: application
- Disjointness gadget: construction

6 Conclusion and Open Questions

Lower bound: statement

We want to prove:

Theorem

$T_{MST}(G) \geq \tilde{\Omega}(1) \cdot \text{ShortcutQuality}(G).$
Lower bound: statement

We want to prove:

Theorem

$T_{MST}(G) \geq \tilde{\Omega}(1) \cdot \text{ShortcutQuality}(G).$

Equivalent:

Lemma

Given any set of connected and node-disjoint parts P_1, \ldots, P_k we can construct shortcuts of quality $\tilde{O}(T_{MST})$ on them.

Lower bound: statement

We want to prove:

Theorem

$T_{MST}(G) \geq \tilde{\Omega}(1) \cdot \text{ShortcutQuality}(G).$

Equivalent:

Lemma

Given any set of connected and node-disjoint parts P_1, \ldots, P_k we can construct shortcuts of quality $\tilde{O}(T_{MST})$ on them.

Equivalent:

Lemma

Given any set of node-disjoint paths P_1, \ldots, P_k we can construct shortcuts of quality $\tilde{O}(T_{MST})$ on them.

Hints on why is it sufficient to consider only node-disjoint paths P_i (instead of arbitrary connected and node-disjoint subsets):

- Let T_1, \ldots, T_k be some spanning trees of P_1, \ldots, P_k (note: P_i is connected).
- Root each T_i and consider the heavy-light decomposition of T_i , which decomposes any tree into a number of paths such that for any path p there are at most HL-depth(p) $\leq O(\log n)$ paths on the root-to-p path in T_i .
- For $i = O(\log n)$ down to 1 do:
 - Consider all paths of HL-depth(p) = i.
 - By assumption, we can construct shortcuts of quality $\tilde{O}(Q)$ on them (each path is its own part). Construct it.
- The shortcut of P_i is the union of the shortcuts associated paths of the heavy-light decomposition of T_i .
- Since the shortcuts of P_i 's were constructed by $O(\log n)$ calls to the path-wise shortcut oracle, their quality increases by a negligible $O(\log n)$ compared to the shortcuts of the paths.

Definition

A disjointness gadget of a set of node-disjoint paths P_1, \ldots, P_k is a connected subset of edges F that touches the heads/tails of each path, but does not otherwise intersect the interior.¹

¹ We also allow O(1) "exception intervals" of length O(D) on each P_i where F can intersect.

A disjointness gadget

Observation

Let F be a disjointness gadget of node-disjoint paths \mathcal{P} . Using a single call to the MST oracle, we can solve the distributed disjointness task on \mathcal{P} .

Idea: Given Alice/Bob inputs x, y we assign MST costs such that $\overrightarrow{\text{MST}}$ has cost 0 if and only if x and y are disjoint.

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{\operatorname{poly(log } n)}|P|$.

Completing the proof:

• It is sufficient to construct of quality T_{MST} on arbitrary node-disjoint paths \mathcal{P} .

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{\operatorname{poly(log } n)}|P|$.

- It is sufficient to construct of quality T_{MST} on arbitrary node-disjoint paths \mathcal{P} .
- Find a disjointness gadget on a large subset $\mathcal{P}' \subseteq \mathcal{P}$.

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{\operatorname{poly(log } n)}|P|$.

- It is sufficient to construct of quality T_{MST} on arbitrary node-disjoint paths \mathcal{P} .
- Find a disjointness gadget on a large subset $\mathcal{P}' \subseteq \mathcal{P}$.
- We can solve the distributed disjointness task on \mathcal{P}' in $\tilde{O}(T_{MST})$ time.

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{\operatorname{poly(log } n)}|P|$.

- It is sufficient to construct of quality T_{MST} on arbitrary node-disjoint paths \mathcal{P} .
- Find a disjointness gadget on a large subset $\mathcal{P}' \subseteq \mathcal{P}$.
- We can solve the distributed disjointness task on \mathcal{P}' in $\tilde{O}(T_{MST})$ time.
- Via network coding gap, there exists shortcut on \mathcal{P}' of quality $\tilde{O}(T_{MST})$.

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{\operatorname{poly(log } n)}|P|$.

- It is sufficient to construct of quality T_{MST} on arbitrary node-disjoint paths \mathcal{P} .
- Find a disjointness gadget on a large subset $\mathcal{P}' \subseteq \mathcal{P}$.
- We can solve the distributed disjointness task on \mathcal{P}' in $\tilde{O}(T_{MST})$ time.
- Via network coding gap, there exists shortcut on \mathcal{P}' of quality $\tilde{O}(T_{MST})$.
- Remove \mathcal{P}' from \mathcal{P} and repeat $\tilde{O}(1)$ times. The final shortcut is still of quality $\tilde{O}(T_{MST})$.

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{O(D)}|P|$.

• Choose an arbitrary "root" r.

- Choose an arbitrary "root" r.
- Consider adding p_i to P'.

- Choose an arbitrary "root" r.
- Consider adding p_i to P'.
 - Walk from head/tail to the root.

- Choose an arbitrary "root" r.
- Consider adding p_i to P'.
 - Walk from head/tail to the root.
 - Add this walk to F.

- Choose an arbitrary "root" r.
- Consider adding p_i to P'.
 - Walk from head/tail to the root.
 - Add this walk to F.
 - *p_i* "deletes" all paths it encounters.

- Choose an arbitrary "root" *r*.
- Consider adding p_i to P'.
 - Walk from head/tail to the root.
 - Add this walk to F.
 - *p_i* "deletes" all paths it encounters.
 - Self-intersecting parts are exceptional intervals.

- Choose an arbitrary "root" *r*.
- Consider adding p_i to P'.
 - Walk from head/tail to the root.
 - Add this walk to F.
 - *p_i* "deletes" all paths it encounters.
 - Self-intersecting parts are exceptional intervals.
- Each p_i deletes O(D) other paths.

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P' \subseteq P$ of size $|P'| \ge \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_i to P'.
 - Walk from head/tail to the root.
 - Add this walk to F.
 - *p_i* "deletes" all paths it encounters.
 - Self-intersecting parts are exceptional intervals.
- Each p_i deletes O(D) other paths.
- So, there must exist an independent subset $|P'| \ge \frac{1}{O(D)}|P|$.

イロト イポト イヨト イヨト

Introduction

- 2 Preliminary: Shortcuts
- 3 High-level technical overview
- 4 Lower bound: more details
- 5 Conclusion and Open Questions

• First universal lower bound for problems like distributed MST.

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \implies characterization in unknown topology.

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \implies characterization in unknown topology.
- Connections to many other fields of TCS.

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \implies characterization in unknown topology.
- Connections to many other fields of TCS.
 - New network coding gaps.
 - New types of oblivious routings.
 - New connections between distributed computing and communication complexity.

Open questions:

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \implies characterization in unknown topology.
- Connections to many other fields of TCS.
 - New network coding gaps.
 - New types of oblivious routings.
 - New connections between distributed computing and communication complexity.

Open questions:

- Universal optimality in other models?
- Universal optimality for other problems?

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \implies characterization in unknown topology.
- Connections to many other fields of TCS.
 - New network coding gaps.
 - New types of oblivious routings.
 - New connections between distributed computing and communication complexity.

Open questions:

- Universal optimality in other models?
- Universal optimality for other problems?