Universally-Optimal Distributed Algorithms for Known Topologies

Speaker: Goran Zuzic

STOC 2021

Bernhard Haeupler
CMU / ETH Zürich

David Wajc Stanford

Goran Zuzic ETH Zürich

Setting: we are given some specific distributed network G.
Examples:

- Computers in a network.
- Processors in a supercomputer.
- Sensors in a field.

Setting: we are given some specific distributed network G.

Examples:

- Computers in a network.
- Processors in a supercomputer.
- Sensors in a field.

Problem: solve an optimization problem on the network graph.

- MST (minimum spanning tree),
- SSSP (single-source shortest path),
- Mincut, etc.

Introduction

Setting: we are given some specific distributed network G.

Examples:

- Computers in a network.
- Processors in a supercomputer.
- Sensors in a field.

Problem: solve an optimization problem on the network graph.

- MST (minimum spanning tree),
- SSSP (single-source shortest path),
- Mincut, etc.

Goal

Design a distributed MST protocol that is as fast as possible on G.

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.
- Practical perspective: spanning tree protocol.

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.
- Practical perspective: spanning tree protocol.

Why is distributed optimization important?

- The world is becoming more-and-more decentralized.
- Theoretical perspective: understanding fundamental barriers in distributed computing will help us design better algorithms.
- Why MST? It is the most well-known and studied problem in the field. Introduced by [Gallagher, Humblet, Spira, 1983].
- In spite of that, many important open questions remain.
- Practical perspective: spanning tree protocol.

Most prior work focuses only on pathological worst-case graphs G.

Our question: what is the optimal running time for non-worst-case networks G.

CONGEST model

Your favorite large network G ．

CONGEST model

- Network topology is an undirected graph.

Your favorite large network G.

CONGEST model

- Network topology is an undirected graph.
- Communication in synchronous rounds.

Your favorite large network G.

CONGEST model

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.

Your favorite large network G.

CONGEST model

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.
- Computation is free.

Your favorite large network G.

CONGEST model

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.
- Computation is free.
- Initially, nodes know only their immediate neighborhood.

CONGEST model

- Network topology is an undirected graph.
- Communication in synchronous rounds.
- Each round neighbors exchange $\tilde{O}(1)$-bit msgs.
- Computation is free.
- Initially, nodes know only their immediate neighborhood.
- Objective: minimize \# rounds.

Background for distributed MST

Graph
\# rounds

Background for distributed MST

	Graph	\# rounds
$[$ GHS 1983]	General graphs	$O(n \log n)$

Background for distributed MST

	Graph	\# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	$O(n)$

Background for distributed MST

	Graph	\# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	$O(n)$
Folklore	General graphs	$\Omega(D)$

Background for distributed MST

	Graph	\# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	$O(n)$
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$\tilde{O}\left(n^{0.613}+D\right)$

	Graph	\# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	$O(n)$
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$\tilde{O}\left(n^{0.613}+\Delta\right)$
[KP 1998]	General graphs	$\tilde{O}(\sqrt{n}+\Delta)$

Graph \# rounds
[GHS 1983]
[Awerbuch 1987]
Folklore
[GKP 1993]
[KP 1998]
[PR 2000]
General graphs $O(n \log n)$
General graphs
General graphs
General graphs
General graphs
Worst-case graph

$O(n)$
$\Omega(D)$
$\tilde{O}\left(n^{0.613}+D\right)$
$\tilde{O}(\sqrt{n}+D)$ $\tilde{\Omega}(\sqrt{n})$

Graph \# rounds
[GHS 1983]
[Awerbuch 1987]
Folklore
[GKP 1993]
[KP 1998]
[PR 2000]
[GH 2015]
General graphs $O(n \log n)$
General graphs
$O(n)$
General graphs
General graphs
General graphs
Worst-case graph
$\Omega(D)$
$\tilde{O}\left(n^{0.613}+D\right)$
$\tilde{O}(\sqrt{n}+D)$ $\tilde{\Omega}(\sqrt{n})$
Planar graphs
$\tilde{O}(D)$

Graph \# rounds
General graphs $O(n \log n)$
General graphs $O(n)$
General graphs
General graphs
General graphs
Worst-case graph
$\Omega(D)$
$\tilde{O}\left(n^{0.613}+D\right)$ $\tilde{O}(\sqrt{n}+D)$ $\tilde{\Omega}(\sqrt{n})$
Planar graphs
Genus-bounded, treewidth-bounded

Folklore
[GKP 1993]
[KP 1998]
[PR 2000]
[GH 2015]
[HIZ 2016a/b]
[GHS 1983]
[Awerbuch 1987]

	Graph	\# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	$O(n)$
Folklore	General graphs	$\Omega(D)$
$[$ GKP 1993]	General graphs	$\tilde{O}\left(n^{0.613}+\infty\right)$
[KP 1998]	General graphs	$\tilde{O}(\sqrt{n}+\infty)$
[PR 2000]	Worst-case graph	$\tilde{\Omega}(\sqrt{n})$
[GH 2015]	Planar graphs	$\tilde{O}(D)$
$[$ HIZ 2016a/b]	Genus-bounded, treewidth-bounded	$\tilde{O}(D)$
$[$ HLZ 2018]	Minor-free	$\tilde{O}\left(D^{2}\right)$

	Graph	\# rounds
[GHS 1983]	General graphs	$O(n \log n)$
[Awerbuch 1987]	General graphs	$O(n)$
Folklore	General graphs	$\Omega(D)$
[GKP 1993]	General graphs	$\tilde{O}\left(n^{0.613}+\infty\right)$
[KP 1998]	General graphs	$\tilde{O}(\sqrt{n}+D)$
[PR 2000]	Worst-case graph	$\tilde{\Omega}(\sqrt{n})$
[GH 2015]	Planar graphs	$\tilde{O}(D)$
$[$ HIZ 2016a/b]	Genus-bounded, treewidth-bounded	$\tilde{O}(D)$
[HLZ 2018]	Minor-free	$\tilde{O}\left(D^{2}\right)$
$[$ GH 2020]	Minor-free	$\tilde{O}(D)$

Shortcoming of the current state-of-the-art
Matching bounds only for worst-case G and special graph classes.

> Shortcoming of the current state-of-the-art
> Matching bounds only for worst-case G and special graph classes.

Open problems [Garay, Kutten, Peleg, 1993]

- What graph parameters characterize the complexity of distributed MST (and other problems)?
- Are there universally-optimal algorithms that are as fast as possible on every topology?

> Shortcoming of the current state-of-the-art
> Matching bounds only for worst-case G and special graph classes.

Open problems [Garay, Kutten, Peleg, 1993]

- What graph parameters characterize the complexity of distributed MST (and other problems)?
- Are there universally-optimal algorithms that are as fast as possible on every topology?

We answer both of these questions.

Our results

For every undirected graph G there is a graph parameter ShortcutQuality (G) [Ghaffari, Haeupler, 2015].

Our results

For every undirected graph G there is a graph parameter ShortcutQuality (G) [Ghaffari, Haeupler, 2015].

- Lower bound (impossibility view):

Theorem

Distributed MST requires at least $\tilde{\Omega}($ ShortcutQuality $(G))$ time.

Our results

For every undirected graph G there is a graph parameter ShortcutQuality (G) [Ghaffari, Haeupler, 2015].

- Lower bound (impossibility view):

Theorem

Distributed MST requires at least $\tilde{\Omega}$ (ShortcutQuality (G)) time.

- Upper bound (algorithmic view):

Theorem

Distributed MST can be solved in $\tilde{O}($ ShortcutQuality $(G))$ time if the topology is known in advance (but not the input!).

Consequences $1 / 2$

- New result: universal optimality $=$ as fast as possible on every network.
- Intuition: "perfectly adapts to the network!"
- We achieve it in the known-topology setting!

Consequences $1 / 2$

- New result: universal optimality $=$ as fast as possible on every network.
- Intuition: "perfectly adapts to the network!"
- We achieve it in the known-topology setting!
- Old notion: "existential optimality" = optimal in a class of graphs.
- Depends on the parameterization $(\tilde{O}(\sqrt{n}+D)$ is optimal only when parameterizing via n and D).
- Universal optimality is optimal with respect to all parameterizations.

Consequences $2 / 2$

- Same method works for many other problems:
- (Approx) distributed SSSP.
- (Approx) distributed mincut.
- Distributed connectivity verification.
- Moreover, $\tilde{O}(\operatorname{ShortcutQuality}(G))$ characterizes all of them.

Consequences $2 / 2$

- Same method works for many other problems:
- (Approx) distributed SSSP.
- (Approx) distributed mincut.
- Distributed connectivity verification.
- Moreover, $\tilde{O}(\operatorname{ShortcutQuality}(G))$ characterizes all of them.
- These problems inter-reduce to each other.

(1) Introduction

(2) Preliminary: Shortcuts

- Shortcut definition
- Shortcut application: part-wise aggregation
- Shortcut application: MST

3 High-level technical overview
(4) Lower bound: more details
(5) Conclusion and Open Questions

Definition ([Ghaffari, Haeupler, 2015])
In a graph $G=(V, E)$ we are given connected node-disjoint parts $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}, P_{i} \subseteq V$. A shortcut of quality Q for \mathcal{P} is:

Definition ([Ghaffari, Haeupler, 2015])
In a graph $G=(V, E)$ we are given connected node-disjoint parts
$\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}, P_{i} \subseteq V$. A shortcut of quality Q for \mathcal{P} is:
(1) (Shortcut edges) Each part P_{i} gets a set of edges $F_{i} \subseteq E$.

Definition ([Ghaffari, Haeupler, 2015])
In a graph $G=(V, E)$ we are given connected node-disjoint parts
$\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}, P_{i} \subseteq V$. A shortcut of quality Q for \mathcal{P} is:
(1) (Shortcut edges) Each part P_{i} gets a set of edges $F_{i} \subseteq E$.
(2) (Dilation) The diameter of $G\left[P_{i}\right]+G\left[F_{i}\right]$ is at most Q.

Definition ([Ghaffari, Haeupler, 2015])

In a graph $G=(V, E)$ we are given connected node-disjoint parts
$\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}, P_{i} \subseteq V$. A shortcut of quality Q for \mathcal{P} is:
(1) (Shortcut edges) Each part P_{i} gets a set of edges $F_{i} \subseteq E$.
(2) (Dilation) The diameter of $G\left[P_{i}\right]+G\left[F_{i}\right]$ is at most Q.

3 (Congestion) Each edge $e \in E$ is used by at most Q different F_{i} 's.

Definition ([Ghaffari, Haeupler, 2015])

In a graph $G=(V, E)$ we are given connected node-disjoint parts $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}, P_{i} \subseteq V$. A shortcut of quality Q for \mathcal{P} is:
(1) (Shortcut edges) Each part P_{i} gets a set of edges $F_{i} \subseteq E$.
(2) (Dilation) The diameter of $G\left[P_{i}\right]+G\left[F_{i}\right]$ is at most Q.

3 (Congestion) Each edge $e \in E$ is used by at most Q different F_{i} 's.

Definition

ShortcutQuality $(G)=\max _{\mathcal{P}} \min _{\text {shortcut for } \mathcal{P}}$ quality (\mathcal{P})

Shortcut application: part-wise aggregation
Example (Part-wise aggregation [Ghaffari, Haeupler, 2015])
We are given connected node-disjoint parts $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$. Each node v has a $\bar{O}(\log n)$-bit private input x_{v}. Each part needs to learn the minimum of the inputs in it.

Shortcut application: part-wise aggregation

Example (Part-wise aggregation [Ghaffari, Haeupler, 2015])

We are given connected node-disjoint parts $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$. Each
 learn the minimum of the inputs in it.

Lemma ([Ghaffari, Haeupler, 2015])
Given a quality- Q shortcut on $\left\{P_{1}, \ldots, P_{k}\right\}$, we can solve the part-wise aggregation problem in $\tilde{O}(Q)$ rounds.

Hints on solving part-wise aggregation via quality- Q shortcuts:

- Assume each part P_{i} has a leader $v_{i} \in P_{i}$ (easy exercise).
- All parts concurrently build a BFS tree of $H_{i}:=G\left[P_{i}\right]+G\left[F_{i}\right]$:
- The leader v_{i} becomes "active" in a uniformly random time $\{0, \ldots, Q\}$.
- When a node becomes active, it spreads a message along its neighbors in H_{i} (only once).
- A node becomes active the first time it hears a message from part i.
- Analysis: in every round at most $O(\log n)$ messages are scheduled to pass through an edge, with high probability. We send those messages by subdividing each round into $O(\log n)$ subrounds. Since the BFS tree has depth Q, the process completes in $O(Q \log n)$ subdivided rounds.
- Spread the maximum using the BFS tree using the same idea (randomly delay each part by $\{0,1, \ldots, Q\}$ and flood-fill the tree).

Shortcut application: MST

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts $\left\{P_{1}, \ldots, P_{k}\right\}$ we can construct a shortcut of quality Q.

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts $\left\{P_{1}, \ldots, P_{k}\right\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Proof. Run Boruvka's algorithm.

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts $\left\{P_{1}, \ldots, P_{k}\right\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Proof. Run Boruvka's algorithm.

- Each node v finds the minimum outgoing edge.

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts $\left\{P_{1}, \ldots, P_{k}\right\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Proof. Run Boruvka's algorithm.

- Each node v finds the minimum outgoing edge.
- Add that edge to the MST.

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts $\left\{P_{1}, \ldots, P_{k}\right\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Proof. Run Boruvka's algorithm.

- Each node v finds the minimum outgoing edge.
- Add that edge to the MST.
- Contract that edge.

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts $\left\{P_{1}, \ldots, P_{k}\right\}$ we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in $\tilde{O}(Q)$ rounds.

Proof. Run Boruvka's algorithm.

- Each node v finds the minimum outgoing edge.
- Add that edge to the MST.
- Contract that edge.
- Repeat $O(\log n)$ times.

(1) Introduction

(2) Preliminary: Shortcuts

(3) High-level technical overview

- Upper bound: shortcut construction
- Lower bound: distributed disjointness task
- Lower bound: ingredients
(4) Lower bound: more details
(5) Conclusion and Open Questions

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
- Challenge even in the known topology setting.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
- Challenge even in the known topology setting.
- Solution: Oblivious routing!

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
- Challenge even in the known topology setting.
- Solution: Oblivious routing!
- Challenge 2: we need to balance between both diameter and congestion.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
- Challenge even in the known topology setting.
- Solution: Oblivious routing!
- Challenge 2: we need to balance between both diameter and congestion.
- Standard solutions fail.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
- Challenge even in the known topology setting.
- Solution: Oblivious routing!
- Challenge 2: we need to balance between both diameter and congestion.
- Standard solutions fail.
- Solution: see the talk "Hop-Constrained Oblivious Routing" [GHZ STOC'21] on Youtube.

Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

- Challenge 1: parts need to construct shortcuts without learning (much) about other parts.
- Challenge even in the known topology setting.
- Solution: Oblivious routing!
- Challenge 2: we need to balance between both diameter and congestion.
- Standard solutions fail.
- Solution: see the talk "Hop-Constrained Oblivious Routing" [GHZ STOC'21] on Youtube.

Theorem (Upper bound)

Suppose all nodes know the topology G upfront. We can construct shortcuts of near-optimal quality Q in $\tilde{O}(Q)$ rounds.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_{1}, \ldots, P_{k}.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_{1}, \ldots, P_{k}.
- Alice controls the heads of the paths $S=\left\{s_{1}, \ldots, s_{k}\right\}$; Bob controls the tails $T=\left\{t_{1}, \ldots, t_{k}\right\}$.

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_{1}, \ldots, P_{k}.
- Alice controls the heads of the paths $S=\left\{s_{1}, \ldots, s_{k}\right\}$; Bob controls the tails $T=\left\{t_{1}, \ldots, t_{k}\right\}$.
- What is the minimum amount of rounds until Alice/Bob decide whether $\exists i \in\{1, \ldots, k\}$ such that $x_{i}=1$ and $y_{i}=1$.

Lower bound: distributed disjointness task

Distributed disjointness task

- Alice and Bob have k-bit inputs x and y, resp.
- We are given k node-disjoint paths P_{1}, \ldots, P_{k}.
- Alice controls the heads of the paths $S=\left\{s_{1}, \ldots, s_{k}\right\}$; Bob controls the tails $T=\left\{t_{1}, \ldots, t_{k}\right\}$.
- What is the minimum amount of rounds until Alice/Bob decide whether $\exists i \in\{1, \ldots, k\}$ such that $x_{i}=1$ and $y_{i}=1$.

Theorem

The distributed disjointness task on each subset of paths $\left\{P_{1}, \ldots, P_{k}\right\}$ can be solved in Q rounds.
if and only if

There exists shortcut of quality $\tilde{O}(Q)$ for P_{1}, \ldots, P_{k}.

- See "Network Coding Gaps for Completion Times of Multiple Unicasts" [HWZ FOCS'20] on Youtube.

We want to prove:
Theorem

$$
T_{M S T}(G) \geq \tilde{\Omega}(1) \cdot \operatorname{ShortcutQuality}(G)
$$

We want to prove:

Theorem

$$
T_{M S T}(G) \geq \tilde{\Omega}(1) \cdot \text { ShortcutQuality }(G)
$$

(1) Introduction

(2) Preliminary: Shortcuts

(3) High-level technical overview

(4) Lower bound: more details

- Lower bound: statement
- Disjointness gadget: definition
- Disjointness gadget: application
- Disjointness gadget: construction
(5) Conclusion and Open Questions

We want to prove:
Theorem
$T_{M S T}(G) \geq \tilde{\Omega}(1) \cdot \operatorname{ShortcutQuality}(G)$.

We want to prove:

Theorem

$$
T_{M S T}(G) \geq \tilde{\Omega}(1) \cdot \operatorname{ShortcutQuality}(G)
$$

Equivalent:

Lemma

Given any set of connected and node-disjoint parts P_{1}, \ldots, P_{k} we can construct shortcuts of quality $\tilde{O}\left(T_{M S T}\right)$ on them.

Lower bound: statement

We want to prove:
Theorem

$$
T_{M S T}(G) \geq \tilde{\Omega}(1) \cdot \operatorname{ShortcutQuality}(G)
$$

Equivalent:

Lemma

Given any set of connected and node-disjoint parts P_{1}, \ldots, P_{k} we can construct shortcuts of quality $\tilde{O}\left(T_{M S T}\right)$ on them.

Equivalent:

Lemma

Given any set of node-disjoint paths P_{1}, \ldots, P_{k} we can construct shortcuts of quality $\tilde{O}\left(T_{M S T}\right)$ on them.

Hints on why is it sufficient to consider only node-disjoint paths P_{i} (instead of arbitrary connected and node-disjoint subsets):

- Let T_{1}, \ldots, T_{k} be some spanning trees of P_{1}, \ldots, P_{k} (note: P_{i} is connected).
- Root each T_{i} and consider the heavy-light decomposition of T_{i}, which decomposes any tree into a number of paths such that for any path p there are at most HL -depth $(\mathrm{p}) \leq O(\log n)$ paths on the root-to- p path in T_{i}.
- For $i=O(\log n)$ down to 1 do:
- Consider all paths of HL-depth(p) $=i$.
- By assumption, we can construct shortcuts of quality $\tilde{O}(Q)$ on them (each path is its own part). Construct it.
- The shortcut of P_{i} is the union of the shortcuts associated paths of the heavy-light decomposition of T_{i}.
- Since the shortcuts of P_{i} 's were constructed by $O(\log n)$ calls to the path-wise shortcut oracle, their quality increases by a negligible $O(\log n)$ compared to the shortcuts of the paths.

Disjointness gadget: definition

Definition

A disjointness gadget of a set of node-disjoint paths P_{1}, \ldots, P_{k} is a connected subset of edges F that touches the heads/tails of each path, but does not otherwise intersect the interior. ${ }^{1}$
${ }^{1}$ We also allow $O(1)$ "exception intervals" of length $O(D)$ on each P_{i} where F can intersect.

A disjointness gadget

Disjointness gadget: application

Observation

Let F be a disjointness gadget of node-disjoint paths \mathcal{P}. Using a single call to the MST oracle, we can solve the distributed disjointness task on \mathcal{P}.

Idea: Given Alice/Bob inputs x, y we assign MST costs such that MST has cost 0 if and only if x and y are disjoint.

Theorem (Main technical contribution of the paper)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{\text { poly }(\log n)}|P|$.

Completing the proof:

- It is sufficient to construct of quality $T_{\text {MST }}$ on arbitrary node-disjoint paths \mathcal{P}.

Theorem (Main technical contribution of the paper)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{\text { poly }(\log n)}|P|$.

Completing the proof:

- It is sufficient to construct of quality $T_{M S T}$ on arbitrary node-disjoint paths \mathcal{P}.
- Find a disjointness gadget on a large subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$.

Theorem (Main technical contribution of the paper)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{\text { poly }(\log n)}|P|$.

Completing the proof:

- It is sufficient to construct of quality $T_{M S T}$ on arbitrary node-disjoint paths \mathcal{P}.
- Find a disjointness gadget on a large subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$.
- We can solve the distributed disjointness task on \mathcal{P}^{\prime} in $\tilde{O}\left(T_{M S T}\right)$ time.

Theorem (Main technical contribution of the paper)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{\text { poly }(\log n)}|P|$.

Completing the proof:

- It is sufficient to construct of quality $T_{\text {MST }}$ on arbitrary node-disjoint paths \mathcal{P}.
- Find a disjointness gadget on a large subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$.
- We can solve the distributed disjointness task on \mathcal{P}^{\prime} in $\tilde{O}\left(T_{M S T}\right)$ time.
- Via network coding gap, there exists shortcut on \mathcal{P}^{\prime} of quality $\tilde{O}\left(T_{M S T}\right)$.

Theorem (Main technical contribution of the paper)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{\text { poly }(\log n)}|P|$.

Completing the proof:

- It is sufficient to construct of quality $T_{\text {MST }}$ on arbitrary node-disjoint paths \mathcal{P}.
- Find a disjointness gadget on a large subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$.
- We can solve the distributed disjointness task on \mathcal{P}^{\prime} in $\tilde{O}\left(T_{M S T}\right)$ time.
- Via network coding gap, there exists shortcut on \mathcal{P}^{\prime} of quality $\tilde{O}\left(T_{M S T}\right)$.
- Remove \mathcal{P}^{\prime} from \mathcal{P} and repeat $\tilde{O}(1)$ times. The final shortcut is still of quality $\tilde{O}\left(T_{M S T}\right)$.

Disjointness gadget: construction

Theorem (Main technical contribution of the paper)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{\text { poly }(\log n)}|P|$.

Disjointness gadget: construction

Theorem (Simplified construction)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

Disjointness gadget: construction

Theorem (Simplified construction)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.

Disjointness gadget: construction

Theorem (Simplified construction)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.

Disjointness gadget: construction

Theorem (Simplified construction)
Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.
- Walk from head/tail to the root.

Disjointness gadget: construction

Theorem (Simplified construction)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.
- Walk from head/tail to the root.
- Add this walk to F.

Disjointness gadget: construction

Theorem (Simplified construction)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.
- Walk from head/tail to the root.
- Add this walk to F.
- p_{i} "deletes" all paths it encounters.

Disjointness gadget: construction

Theorem (Simplified construction)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.
- Walk from head/tail to the root.
- Add this walk to F.
- p_{i} "deletes" all paths it encounters.
- Self-intersecting parts are exceptional intervals.

Disjointness gadget: construction

Theorem (Simplified construction)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.
- Walk from head/tail to the root.
- Add this walk to F.
- p_{i} "deletes" all paths it encounters.
- Self-intersecting parts are exceptional intervals.
- Each p_{i} deletes $O(D)$ other paths.

Disjointness gadget: construction

Theorem (Simplified construction)

Given any set of node-disjoint paths P, there exists a disjointness gadget on a subset $P^{\prime} \subseteq P$ of size $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

- Choose an arbitrary "root" r.
- Consider adding p_{i} to P^{\prime}.
- Walk from head/tail to the root.
- Add this walk to F.
- p_{i} "deletes" all paths it encounters.
- Self-intersecting parts are exceptional intervals.
- Each p_{i} deletes $O(D)$ other paths.
- So, there must exist an independent subset $\left|P^{\prime}\right| \geq \frac{1}{O(D)}|P|$.

(1) Introduction

(2) Preliminary: Shortcuts

(3) High-level technical overview
(4) Lower bound: more details
(5) Conclusion and Open Questions

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \Longrightarrow characterization in unknown topology.

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \Longrightarrow characterization in unknown topology.
- Connections to many other fields of TCS.

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \Longrightarrow characterization in unknown topology.
- Connections to many other fields of TCS.
- New network coding gaps.
- New types of oblivious routings.
- New connections between distributed computing and communication complexity.

Open questions:

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \Longrightarrow characterization in unknown topology.
- Connections to many other fields of TCS.
- New network coding gaps.
- New types of oblivious routings.
- New connections between distributed computing and communication complexity.

Open questions:

- Universal optimality in other models?
- Universal optimality for other problems?

Conclusion and Open Questions

- First universal lower bound for problems like distributed MST.
- First universally-optimal algorithms (when the topology is known).
- Conjecture: shortcuts can be constructed efficiently \Longrightarrow characterization in unknown topology.
- Connections to many other fields of TCS.
- New network coding gaps.
- New types of oblivious routings.
- New connections between distributed computing and communication complexity.

Open questions:

- Universal optimality in other models?
- Universal optimality for other problems?

Thank you!

