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Introduction

Setting: we are given some specific distributed network G .

Examples:
Computers in a network.
Processors in a
supercomputer.
Sensors in a field.

Problem: solve an optimization problem on the network graph.
MST (minimum spanning tree),
SSSP (single-source shortest path),
Mincut, etc.

Goal
Design a distributed MST protocol that is as fast as possible on G .
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Why is distributed optimization important?

The world is becoming more-and-more decentralized.

Theoretical perspective: understanding fundamental barriers in
distributed computing will help us design better algorithms.
Why MST? It is the most well-known and studied problem in
the field. Introduced by [Gallagher, Humblet, Spira, 1983].
In spite of that, many important open questions remain.
Practical perspective: spanning tree protocol.

Most prior work focuses only on pathological worst-case graphs G .

Our question: what is the optimal running time for non-worst-case
networks G .
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Model

Your favorite large network G .

CONGEST model

Network topology is an
undirected graph.
Communication in
synchronous rounds.
Each round neighbors
exchange Õ(1)-bit msgs.
Computation is free.
Initially, nodes know only
their immediate
neighborhood.
Objective: minimize #
rounds.
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exchange Õ(1)-bit msgs.
Computation is free.
Initially, nodes know only
their immediate
neighborhood.
Objective: minimize #
rounds.

4 / 27



Model

Your favorite large network G .

CONGEST model
Network topology is an
undirected graph.
Communication in
synchronous rounds.

Each round neighbors
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Background for distributed MST

Graph # rounds

[GHS 1983] General graphs O(n log n)
[Awerbuch 1987] General graphs O(n)

Folklore General graphs Ω(D)

[GKP 1993] General graphs Õ(n0.613 + D)

[KP 1998] General graphs Õ(
√
n + D)

[PR 2000] Worst-case graph Ω̃(
√
n)

[GH 2015] Planar graphs Õ(D)

[HIZ 2016a/b] Genus-bounded, treewidth-bounded Õ(D)

[HLZ 2018] Minor-free Õ(D2)

[GH 2020] Minor-free Õ(D)
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√
n + D)

[PR 2000] Worst-case graph Ω̃(
√
n)

[GH 2015] Planar graphs Õ(D)
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Shortcoming of the current state-of-the-art
Matching bounds only for worst-case G and special graph classes.

Open problems [Garay, Kutten, Peleg, 1993]

What graph parameters characterize the complexity of
distributed MST (and other problems)?
Are there universally-optimal algorithms that are as fast as
possible on every topology?

We answer both of these questions.
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Our results

For every undirected graph G there is a graph parameter
ShortcutQuality(G ) [Ghaffari, Haeupler, 2015].

Lower bound (impossibility view):

Theorem

Distributed MST requires at least Ω̃(ShortcutQuality(G )) time.

Upper bound (algorithmic view):

Theorem

Distributed MST can be solved in Õ(ShortcutQuality(G )) time if
the topology is known in advance (but not the input!).
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Consequences 1/2

New result: universal optimality = as fast as possible on every
network.

Intuition: “perfectly adapts to the network!”
We achieve it in the known-topology setting!

Old notion: “existential optimality” = optimal in a class of
graphs.

Depends on the parameterization (Õ(
√
n + D) is optimal only

when parameterizing via n and D).
Universal optimality is optimal with respect to all
parameterizations.
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Consequences 2/2

Same method works for many other problems:
(Approx) distributed SSSP.
(Approx) distributed mincut.
Distributed connectivity verification.

Moreover, Õ(ShortcutQuality(G )) characterizes all of them.

These problems inter-reduce to each other.
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Shortcut definition

Definition ([Ghaffari, Haeupler, 2015])

In a graph G = (V ,E ) we are given connected node-disjoint parts
P = {P1,P2, . . . ,Pk}, Pi ⊆ V . A shortcut of quality Q for P is:

1 (Shortcut edges) Each part Pi gets a set of edges Fi ⊆ E .
2 (Dilation) The diameter of G [Pi ] + G [Fi ] is at most Q.
3 (Congestion) Each edge e ∈ E is used by at most Q different

Fi ’s.

Definition

ShortcutQuality(G ) = max
P

min
shortcut for P

quality(P)
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Shortcut application: part-wise aggregation

Example (Part-wise aggregation [Ghaffari, Haeupler, 2015])

We are given connected node-disjoint parts {P1,P2, . . . ,Pk}. Each
node v has a O(log n)-bit private input xv . Each part needs to
learn the minimum of the inputs in it.

Lemma ([Ghaffari, Haeupler, 2015])

Given a quality-Q shortcut on {P1, . . . ,Pk}, we can solve the
part-wise aggregation problem in Õ(Q) rounds.
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Hints on solving part-wise aggregation via quality-Q shortcuts:
Assume each part Pi has a leader vi ∈ Pi (easy exercise).
All parts concurrently build a BFS tree of Hi := G [Pi ] + G [Fi ]:

The leader vi becomes “active” in a uniformly random time
{0, . . . ,Q}.
When a node becomes active, it spreads a message along its
neighbors in Hi (only once).
A node becomes active the first time it hears a message from
part i .
Analysis: in every round at most O(log n) messages are
scheduled to pass through an edge, with high probability. We
send those messages by subdividing each round into O(log n)
subrounds. Since the BFS tree has depth Q, the process
completes in O(Q log n) subdivided rounds.

Spread the maximum using the BFS tree using the same idea
(randomly delay each part by {0, 1, . . . ,Q} and flood-fill the
tree).

13 / 27



Shortcut application: MST

Definition (Construction oracle)

Suppose that for each set of connected and node-disjoint parts
{P1, . . . ,Pk} we can construct a shortcut of quality Q.

Example ([Ghaffari, Haeupler, 2015])

Given a construction oracle of quality Q, we can solve MST in
Õ(Q) rounds.

Proof. Run Boruvka’s algorithm.
Each node v finds the minimum outgoing edge.
Add that edge to the MST.
Contract that edge.
Repeat O(log n) times.
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Õ(Q) rounds.

Proof. Run Boruvka’s algorithm.
Each node v finds the minimum outgoing edge.
Add that edge to the MST.
Contract that edge.
Repeat O(log n) times.

14 / 27



1 Introduction

2 Preliminary: Shortcuts

3 High-level technical overview
Upper bound: shortcut construction
Lower bound: distributed disjointness task
Lower bound: ingredients

4 Lower bound: more details

5 Conclusion and Open Questions

15 / 27



Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

Challenge 1: parts need to construct shortcuts without
learning (much) about other parts.

Challenge even in the known topology setting.
Solution: Oblivious routing!

Challenge 2: we need to balance between both diameter and
congestion.

Standard solutions fail.
Solution: see the talk “Hop-Constrained Oblivious Routing”
[GHZ STOC’21] on Youtube.

Theorem (Upper bound)

Suppose all nodes know the topology G upfront. We can construct
shortcuts of near-optimal quality Q in Õ(Q) rounds.
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16 / 27



Upper bound: shortcut construction

Question: Can we efficiently construct shortcuts?
Answer: Yes! But currently only in the known topology setting.

Challenge 1: parts need to construct shortcuts without
learning (much) about other parts.

Challenge even in the known topology setting.

Solution: Oblivious routing!

Challenge 2: we need to balance between both diameter and
congestion.

Standard solutions fail.
Solution: see the talk “Hop-Constrained Oblivious Routing”
[GHZ STOC’21] on Youtube.

Theorem (Upper bound)

Suppose all nodes know the topology G upfront. We can construct
shortcuts of near-optimal quality Q in Õ(Q) rounds.
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Lower bound: distributed disjointness task

Distributed disjointness task
Alice and Bob have k-bit inputs x and y , resp.

We are given k node-disjoint paths P1, . . . ,Pk .
Alice controls the heads of the paths S = {s1, . . . , sk}; Bob
controls the tails T = {t1, . . . , tk}.
What is the minimum amount of rounds until Alice/Bob
decide whether ∃i ∈ {1, . . . , k} such that xi = 1 and yi = 1.

Theorem
The distributed disjointness task on each subset of paths
{P1, . . . ,Pk} can be solved in Q rounds.

if and only if

There exists shortcut of quality Õ(Q) for P1, . . . ,Pk .

See “Network Coding Gaps for Completion Times of Multiple
Unicasts” [HWZ FOCS’20] on Youtube.
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Lower bound: ingredients

We want to prove:

Theorem

TMST (G ) ≥ Ω̃(1) · ShortcutQuality(G ).

Shortcut
quality

Distributed
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gap
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Lower bound: statement

We want to prove:

Theorem

TMST (G ) ≥ Ω̃(1) · ShortcutQuality(G ).

Equivalent:

Lemma
Given any set of connected and node-disjoint parts P1, . . . ,Pk we
can construct shortcuts of quality Õ(TMST ) on them.

Equivalent:

Lemma
Given any set of node-disjoint paths P1, . . . ,Pk we can construct
shortcuts of quality Õ(TMST ) on them.
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Hints on why is it sufficient to consider only node-disjoint paths Pi

(instead of arbitrary connected and node-disjoint subsets):
Let T1, . . . ,Tk be some spanning trees of P1, . . . ,Pk (note:
Pi is connected).
Root each Ti and consider the heavy-light decomposition of
Ti , which decomposes any tree into a number of paths such
that for any path p there are at most HL-depth(p) ≤ O(log n)
paths on the root-to-p path in Ti .
For i = O(log n) down to 1 do:

Consider all paths of HL-depth(p) = i .
By assumption, we can construct shortcuts of quality Õ(Q) on
them (each path is its own part). Construct it.

The shortcut of Pi is the union of the shortcuts associated
paths of the heavy-light decomposition of Ti .
Since the shortcuts of Pi ’s were constructed by O(log n) calls
to the path-wise shortcut oracle, their quality increases by a
negligible O(log n) compared to the shortcuts of the paths.
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Disjointness gadget: definition

Definition
A disjointness gadget of a set of node-disjoint paths P1, . . . ,Pk is a
connected subset of edges F that touches the heads/tails of each
path, but does not otherwise intersect the interior.1

1 We also allow O(1) “exception intervals” of length O(D) on each Pi where F

can intersect.

A disjointness gadget
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Disjointness gadget: application

Observation
Let F be a disjointness gadget of node-disjoint paths P. Using a
single call to the MST oracle, we can solve the distributed
disjointness task on P.

Idea: Given Alice/Bob inputs x , y we assign MST costs such that
MST has cost 0 if and only if x and y are disjoint.
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Theorem (Main technical contribution of the paper)

Given any set of node-disjoint paths P , there exists a disjointness
gadget on a subset P ′ ⊆ P of size |P ′| ≥ 1

poly(log n) |P|.

Completing the proof:
It is sufficient to construct of quality TMST on arbitrary
node-disjoint paths P.

Find a disjointness gadget on a large subset P ′ ⊆ P.
We can solve the distributed disjointness task on P ′ in
Õ(TMST ) time.
Via network coding gap, there exists shortcut on P ′ of quality
Õ(TMST ).
Remove P ′ from P and repeat Õ(1) times. The final shortcut
is still of quality Õ(TMST ).
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Disjointness gadget: construction

Theorem (Main technical contribution of the paper)

Given any set of node-disjoint paths P , there exists a disjointness
gadget on a subset P ′ ⊆ P of size |P ′| ≥ 1

poly(log n) |P|.

Choose an arbitrary “root” r .
Consider adding pi to P ′.

Walk from head/tail to the root.
Add this walk to F .
pi “deletes” all paths it
encounters.
Self-intersecting parts are
exceptional intervals.

Each pi deletes O(D) other paths.
So, there must exist an
independent subset |P ′| ≥ 1

O(D) |P|.
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Conclusion and Open Questions

First universal lower bound for problems like distributed MST.

First universally-optimal algorithms (when the topology is
known).
Conjecture: shortcuts can be constructed efficiently =⇒
characterization in unknown topology.
Connections to many other fields of TCS.

New network coding gaps.
New types of oblivious routings.
New connections between distributed computing and
communication complexity.

Open questions:
Universal optimality in other models?
Universal optimality for other problems?

Thank you!
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